
Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 1 

A Literature Review of the Effects 
of Energy Development on 

Ungulates: Implications for Central 
and Eastern Montana 

 

 
Prepared by:  

Mark Hebblewhite, PhD 
Wildlife Ecologist & Assistant Professor, 

Ungulate Habitat Ecologist, 
Wildlife Biology Program, 

College of Forestry & Conservation, 
University of Montana, Missoula, MT, 59812 

 
Prepared for:  

Windy Davis 
Energy Specialist Biologist 

Montana Fish, Wildlife and Parks 
Region 7, Headquarters 
Miles City, MT, 59301 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 2 

Acknowledgements 
 
The author wishes to acknowledge Windy Davis, contract supervisor and energy-
wildlife specialist for Montana Fish, Wildlife and Parks (MTFWP) for guidance 
and advice during this literature review, and Rick Dorvall, contracting officer for 
MTFWP for administering this literature review contract FWP # 080099. I also 
acknowledge the assistance of Darrin Newton, Zachary Voyles, and Jean Polfus 
for assistance in assembling the relevant scientific literature, and Kathryn Socie 
for editing the final version. I also thank colleagues Joel Berger, Kim Murray-
Berger, Fiona Schmiegelow, Dave Naugle, Luigi Morgantini and Marco Musiani 
for ongoing discussions on the effects of energy development on wildlife in 
general. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Please cite as: 
 
Hebblewhite, M. 2008. A literature review of the effects of energy development 
on ungulates: Implications for central and eastern Montana. Report prepared for 
Montana Fish, Wildlife and Parks, Miles City, MT.   
 
Cover photos: M. Hebblewhite (elk, pronghorn, sheep, mule deer), J. Berger 
(pronghorn and energy development in the Jonah field). 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 3 

Table of Contents 
Acknowledgements ............................................................................................... 2 

Table of Contents .................................................................................................. 3 

List of Figures ....................................................................................................... 5 

List of Tables ........................................................................................................ 6 

Executive Summary .............................................................................................. 7 

1.0 INTRODUCTION ............................................................................................ 9 

2.0 LITERATURE REVIEW METHODS AND SCOPE ........................................ 13 

2.1 Literature Review ............................................................................................. 14 

3.0 RESULTS ..................................................................................................... 16 

3.1 Literature Review Summary .............................................................................. 16 

3.1.1 Species and publication type ...................................................................... 16 

3.1.2 Study design, methods, sample size ........................................................ 17 

3.1.3 Types of Energy Development ................................................................... 21 

3.2 Elk (Cervus elaphus) ........................................................................................... 23 

3.2.1 Sagebrush Steppe and Grasslands .......................................................... 23 

3.2.2 Mixed communities ...................................................................................... 27 

3.2.3 Mountains and Foothills .............................................................................. 28 

3.2.3 A Brief Review of Related Studies on the Effects of Human Activities 

Not Including Energy Development on Elk ........................................................ 31 

3.2.5 Effects of Hunting and Recreation on Elk ................................................ 36 

3.3 Pronghorn Antelope (Antilocapra americana) ................................................. 44 

3.3.1 Grasslands .................................................................................................... 44 

3.3.2 Shrub-Steppe ................................................................................................ 45 

3.3.3 Semi-desert: effects of military activities .................................................. 48 

3.4 Mule Deer (Odocoileus hemionus) ............................................................... 49 

3.4.1Sagebrush-Steppe and Grasslands ........................................................... 49 

3.4.2 Mountain ........................................................................................................ 53 

3.5 Combined Studies on Mule Deer and Pronghorn .......................................... 56 

3.5.1 Sagebrush-Steppe ....................................................................................... 56 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 4 

3.6 Bighorn Sheep (Ovis canadensis) .................................................................... 65 

3.7 Moose (Alces alces) ........................................................................................ 67 

3.8 Woodland Caribou (Rangifer tarandus tarandus) ...................................... 69 

4.0 DISCUSSION ................................................................................................ 82 

4.1 Effects of Roads .................................................................................................. 85 

4.2 Amount of Development ..................................................................................... 87 

4.3 Limitations ............................................................................................................. 88 

4.3.1 Experimental Design ........................................................................................ 88 

4.3.2 Spatial Scale ..................................................................................................... 92 

4.4 Potential Toxicological Impacts ......................................................................... 94 

4.5 Conceptual Approach for Understanding the Effects of Energy 

Development on Wildlife ........................................................................................... 95 

4.6 Recommendations for Future Energy Development Impact Studies on 

Ungulates in Eastern Central Montana ............................................................... 98 

4.6.1 Meta Analyses .............................................................................................. 98 

4.6.2 Habitat-linked cumulative effects assessment .......................................... 101 

4.6.3 Large-scale, replicated experimental tests of the impact of energy 

development on ungulates. ................................................................................ 102 

4.6.4 An Adaptive Management Framework for Assessing the Cumulative 

Impacts of Energy Development on Ungulates ............................................... 104 

5.0 MANAGEMENT IMPLICATIONS ................................................................ 108 

6.0  LITERATURE REVIEW ............................................................................. 110 

Appendix A: Electronic Database...................................................................... 122 

Appendix B: Management Guidelines……………………………………………..125 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 5 

List of Figures 
 

Fig.1. Study area for the literature review of the effects of energy development on 
ungulates, BLM (2003a,b). …...………………………………………………………..……..13 
 
Fig. 2 & 3. Proportion of the studies that directly studied aspects of energy development 
on wildlife (n=70) by 2) publication type and 3) species, including literature reviews as a 
category. ………………………………………………………………………....…………….16 
 
Fig. 4. Frequency distribution of study area sizes for studies on the effects of energy 
development on ungulates (n=44). …..………………………………………..……………..18 
 
Fig. 5. Frequency distribution of study area duration for studies on the effects of energy 
development on ungulates where duration was reported (n=56)……………………….…20 
 
Fig. 6. Frequency distribution of study date for studies (n=60) on the effects of energy 
development on ungulates plotted against peak oil production in Montana (in millions of 
barrels of oil/year); source Oil and Gas Conservation Division ..........................………. 22 
 
Fig. 7. Vegetation communities in which studies on the impacts of energy development 
on ungulates were conducted (n=69)………….……….…………………..………..……..22 
 

Fig. 8. Locations of the seven replicate study sites in the Montana Cooperative Elk-
Logging study 1970-1985, reproduced from Lyon et al. (1985).…………………………32 
 
Fig. 9. Portion of the study area for Frair (2005) and Frair et al. (2007) in the central east 
slopes of Alberta‟s forested foothills …………………………………...…………………….34 
 
Fig. 10.  Meta-analysis model for woodland caribou population growth rate as a function 
of the % of the boreal caribou range that was burned and the % of the caribou range 
converted to non-habitat through industrial development... ………….…………………...72 
 
Fig.11. Simple algebraic models for the effects of increasing wildlife buffer avoidance 
size as a function of linear disturbance and the density of wells, assuming no overlap of 
buffers of disturbances. ………………………………………………………………...……..86 
 
Fig. 12. Common experimental designs for studying impacts of energy development on 
wildlife in increasing order of scientific rigor (Underwood 1996)……………………..92 
 
Fig. 13. Conceptual trophic food web illustrating direct and indirect effects…...……96 
 
Fig.14. Conceptual diagram illustrating the importance of indirect species interactions in 
understanding the effects of energy development on wildlife…………………………..97 
 
Fig.15. Analytical framework for the development of habitat linked PVA analysis to 
assess the impact of wildlife within a population undergoing energy development from 
Johnson & Boyce (2005)…………….……………………………………………………....105 
 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 6 

Fig.16 .  Conceptual diagram of adaptive resource management as defined by Walters 
(1986, adapted from http://www.cmar.csiro.au/research/mse). …….…………………107 

 

List of Tables 
 
Table 1. Summary statistics for literature on the effects of energy development and 
human disturbance on ungulates, n= 126 studies..…………………………………….…..19 
 
Table 2. Review of scientific literature on the effects of energy development on Elk .....39 
 
Table 3. Review of scientific literature on the effects of energy development on Mule 
deer and Pronghorn ………………………………………………………………………..….59 
 
Table 4. Review of scientific literature on the effects of energy development on Moose, 
Bighorn Sheep, and Caribou . ……………………………….……………………………….73 
 
Table 5. Summary of ungulate studies showing avoidance of roads and well sites, 
averaging results across seasons and habitat types. …………………….……………….86 
 
Table 6. Summary of density of energy development disturbance in terms of density of 
active wellsites/km2 and linear kilometers of pipelines, seismic lines and roads/km2 from 
studies where such information was reported……….……….……………………………..88 
 
Table 7. Summary of one-way migration distances recorded in selected reviewed 
studies, that were mainly summarized by Berger (2004). …………………………………94 

 

http://www.cmar.csiro.au/research/mse


Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 7 

Executive Summary 
 
A literature review of >160 scientific and technical reports was conducted to 
review the effects of energy development ungulates, separated by important 
seasonal and habitat types. Effects of energy development and human activity in 
general were assessed for elk, mule deer, pronghorn antelope, moose, bighorn 
sheep and woodland caribou. Weaknesses of the existing literature in addressing 
and providing guidelines for the management of energy development are 
presented.  A recommended course of action for management oriented research 
is presented. Finally, a searchable electronic database is developed of the 
literature including abstracts and digital copies to aid in evaluating future energy 
development on ungulates.  
  

The current management policy for energy development makes two untested 
assumptions regarding the effects of energy development on wildlife. First, it 
assumes that negative impacts of energy development on wildlife can be 
mitigated through small-scale stipulations that regulate the timing and duration of 
activity, but not the amount. This current policy also assumes that wildlife 
populations can withstand continued, incremental development. Neither of these 
two assumptions are supported or refuted by evidence reviewed in the scientific 
literature as part of this review. Regardless, adaptive experiments to explicitly 
test these management hypotheses are needed. 
 

There is currently no rigorous scientific evidence that energy development will 
have population-level impacts on pronghorn, mule deer or elk in eastern or 
central Montana. However, this is because there have been no properly 
designed, thoughtful, rigorous tests of the population-level impacts conducted to 
date. Instead, a host of observational studies on small-scale and short-term 
responses provides limited guidance to managers in search of the crucial 
question of population impacts. While theoretically justified, relying on the 
precautionary principle to restrict energy development will likely be unsuccessful 
as an energy development policy. 

 
Short-term and small-scale impacts of energy development have been 

relatively well described in previous reviews and studies, albeit most often in 
poorly designed observational studies. GPS collar studies have aided attempts to 
document small-scale responses to development, and will continue to be useful 
in the future in this correlational framework. Ungulates predictably avoid areas 
during active exploration and drilling, moving to denser cover and areas farther 
from human activity. Recommendations from previous studies still hold, namely 
timing and seasonal restrictions for critical habitats and resources. Across 
studies, ungulates showed avoidance responses to human development an 
average of 1000m from the human disturbance. 
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Scaling up from small-scale/short-term studies to population-level impacts will 
be difficult. One of the key difficulties is scaling up responses of ungulates at low 
development densities to high densities present in heavily developed oilfields 
(e.g. Upper Green River Basin). Preliminary analyses suggest that thresholds for 
significant impacts on ungulates will occur between densities of 0.1 to 0.5 
wells/km2 and 0.2 to 1.0 linear km/km2 of roads and linear developments. 
However, these results are preliminary, and more formal meta-analyses are 
suggested. 

 
Building on the strong example of the Montana Cooperative Elk-Logging 

study that ran through the 1970‟s and 1980‟s, a series of research and 
management recommendations are made. First, a formal meta-analyses of the 
existing energy literature is recommended to allow scientifically defensible 
quantitative estimates of the effects of energy development on behavior, habitat 
and population dynamics.  

 
Second, building on this meta-analysis, a power analysis of the optimal 

experimental design, level of replication, and duration of a energy-impact study 
design should be conducted to reveal the best approach for both short-term 
(behavior, habitat) and long-term impact assessment.  

 
Third, a series of large-scale, population-level and long-term experimental 

comparisons similar to the Montana Cooperative Elk-Logging study should be 
initiated in eastern and central Montana on elk, mule deer and pronghorn. The 
study design should be replicated ideally across three levels of development; 
none – control, initial phases – low densities of wells/roads, and after at least a 
decade of intensive development, to allow a rigorous test of the population 
effects of energy development on wildlife. Partnerships with existing studies 
occurring in other developed areas should be developed (e.g., Upper Green 
River Basin studies), but control areas in Montana should be developed (e.g., 
Charles M. Russell Wildlife Refuge).  

 
Fourth, implement an adaptive management experiment (in conjunction with 

the third point above) to test whether the current energy policy is sustainable 
from a wildlife population perspective. The de-facto energy policy being 
implemented in Montana (and elsewhere) makes a number of assumptions that 
may in fact be incorrect. However, no valid alternatives have been developed or 
put forward as serious contenders that could be compared in large management 
experiments to test whether different models for energy development are 
required. If the bleak situation for Alberta caribou is any suggestion, alternative 
energy development policies are sorely needed.  
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1.0 INTRODUCTION 

 Increased energy consumption and the perception of over-reliance of the United 

States on foreign oil deposits to meet domestic energy requirements lead to a national 

level policy to: increase energy efficiency, develop new energy resources, improve 

efficiency and extraction of energy from existing resources, and improve the efficiency 

of key international energy consumers (American Gas Association 2005). This national 

policy manifested in Montana in October of 2005 when Governor Brian Schweitzer 

revealed the Schweitzer Energy Policy (Governors Office of Economic Development 

2005). This Montana Energy Policy emphasized the following energy development 

themes in Montana, calling for diversification, a commitment to renewable and cleaner 

development (including clean coal), increased energy efficiency and conservation, 

increasing supportive infrastructure and adherence to environmental laws and 

community acceptance.  Within the Department of Commerce, the Division of Energy 

Infrastructure, Promotion and Development‟s (DEIPD) mission statement is to: 

“The Division's mission centers around promoting and developing additional energy 

distribution capacity so that potential jobs become actual jobs and Montana's tax base is 

further enhanced for the benefit of its citizens. Increased distribution capacity also paves 

the way for clean, green energy creation and utilization. We will work to facilitate the 

promotion and development of energy infrastructure that will allow the responsible 

development of Montana's abundant energy resources including wind, bio-fuels, 

geothermal, biomass and clean coal gasification, liquefaction and power production 

which use carbon sequestration technologies when possible.” (DEIPD, Dept.of 

Commerce, Government of Montana, 2008) 

The effects of this government policy on energy development have been felt 

strongly in the energy sector. In Montana since 2005 oil production has increased 50% 

and a state renewable energy portfolio tax and incentive program to increase the growth 

and production of renewable energy was adapted. The state has increased tax 

incentives for energy development, earning itself recognition as one of the most 

favorable and lowest taxed places to develop energy in the world (Business Facilities 

Magazine 2007); initiated the Montana Alberta Tie electrical energy transmission 

project, and developed proposals to increase both renewable and non-renewable 
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energy resources throughout eastern and central Montana in conjunction with federal 

land management agencies such as the Bureau of Land Management (BLM). Between 

2002 and 2006, oil production has increased 213% (barrels production), the number of 

oil wells 17%, and the number of natural gas wells 34% while production increased by 

17% (Montana Board of Oil and Gas Conservation 2006).  While this relative growth is 

impressive, comparison to the heavily developed oil and gas fields of Alberta (40% 

larger in area to Montana) reveals Montana production is <10% of currently active oil 

and gas wells in Alberta, which is also undergoing similar rates of growth (10-20%, 

Alberta Energy 2008).  Thus, from an energy development perspective, Montana is just 

getting started. 

This increase in development in Montana closely matches the nearly 60% 

increase in the number of permit applications throughout the Rocky Mountain West in 

the last decade (American Gas Association 2005), with much of it focused on Montana, 

Wyoming and Colorado. Montana is touted as having amongst the greatest 

undeveloped natural gas and oil fields in the country (American Gas Association 2005), 

much of it in the Montana Thrust Belt (north-east Montana), Powder River basin (south-

central Montana), and East Front deposits. Despite the focus on renewable energy 

development by Montana‟s Schweitzer Energy Policy, however, federal-state policies 

will ensure that traditional, non-renewable energy development will constitute the bulk of 

the growth in energy development in Montana, especially in these key energy deposits.  

For example, within the Powder River Basin region (~16,000 km2) within the state 

of Montana (BLM 2003a, b), as many as 18,000 coal bed natural gas (CBNG) wells 

have been approved for drilling on federal lands by the Bureau of Land Management 

(BLM, 2003a, b). This massive increase in oil and gas development will be associated 

with similar increases in infrastructure and development. For example, each CBNG 

wellsite is accompanied by construction of 2-7 km of access roads and 7-22 km of 

power lines per km2, as well as compressor stations, pipelines, holding ponds, etc. 

(Bureau of Land Management 2003a, b). Other types of energy development, such as 

traditional oilfield drilling, natural gas development, coal bed methane, and new 

renewable energy developments such as wind power are also associated with extensive 

road, power line and pipeline developments. Throughout Montana, similar resource 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 11 

management plans focusing on energy development have been developed by the BLM, 

a key federal regulating agency on federal lands, ensuring the future expansion of 

energy development in eastern and central Montana, especially the Billings, Big Dry, 

Headwaters, Powder River Basin, and Judith Valley Phillips resource management 

planning areas administered by the BLM (BLM 2008, see Fig. 3 below).   

Increased energy development, and the infrastructure associated with well sites, 

has the potential to have profound impacts on natural ecosystems in eastern and 

central Montana.  Given this backdrop on intensive energy development, the Montana 

Department of Fish, Wildlife and Parks faces a huge policy, administrative and technical 

challenge to meet its goals to:  

“Sustain our diverse fish, wildlife and parks resources and the quality recreational 

opportunities that are essential to a high quality of life for Montanans and our guests 

(MTFWP, 2008).” 

Energy development has been shown to impact almost all natural resources including 

surface and subsurface hydrological processes, natural disturbance regimes such as 

fire, wildlife habitat, soil erosion processes, and wildlife population dynamics themselves 

(e.g., BLM 2003 a,b; (Naugle et al. 2004, Bayne et al. 2005)). While regulatory 

processes are in place that can provide some effective mitigation for key wildlife 

species, such as the potentially threatened Greater Sage Grouse (Centrocercus 

urophasianus) (Aldridge and Brigham 2002, Naugle et al. 2004), mitigation strategies 

are usually implemented on a site-by-site basis at the scale of the individual well site, or 

at intermediate scales across several wellsites or adjacent oil fields. Regardless, with 

petitioning, even small-scale mitigation at the site of the individual wellsite can also be 

waived by federal agencies. And the situation is even less regulated on private lands, 

where a substantial portion of energy development is occurring; few to no guidelines 

exist to minimize the impacts of energy development to wildlife. Regardless of the small-

scale regulations often applied to individual well site permits, the impacts of energy 

development on wildlife especially are most often felt through cumulative effects of not 

just one wellsite at a time, but across large landscape scales in the order of 1000‟s km2 

(Kennedy 2000, Schneider et al. 2003, Aldridge et al. 2004, Johnson et al. 2005, Frair et 

al. 2007, Walker et al. 2007). Thus, MTFWP faces the difficult task of sustaining 
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populations of wildlife at large landscape scales across Montana despite the regulatory 

and policy challenge of relatively small scale and piecemeal environmental impact 

assessment.  

 To aid the mission of MTFWP, a series of reviews of the effects of energy 

development on key wildlife species was initiated in 2007. This review constitutes part 

of this process and focuses on reviewing the effects of energy development on 

ungulates throughout the Rocky Mountain western with particular attention towards 

habitats in eastern and central Montana including sagebrush, grassland and pine-

breaks habitats. The following ungulate species are considered the focus of this review, 

bighorn sheep (Ovis canadensis), American pronghorn (Antilocapra antilocapra), elk 

(Cervus elaphus) and mule deer (Odocoileus hemionus), although effects of energy 

development on the large mammal community in which these key ungulate species 

reside will also be considered.  Moreover, given the extensive literature on the effects of 

energy development on woodland caribou (Rangifer tarandus), particularly in Alberta, I 

review the impacts of energy development there with a focus on providing key insights 

to Montana in terms of developing effective mitigation and cumulative effects 

assessment strategies. Given the vast difference between both the means of energy 

development and wildlife present in the arctic (e.g., National Research Council 2003), I 

do not review the effects of energy development on arctic ungulates, but discuss where 

appropriate. The objectives of this literature review are: 

1) Review the effects of energy development (including oil, gas, and wind 

development) on ungulates, separated by important seasonal and habitat 

types. 

2) Review the weaknesses of the existing literature in addressing and providing 

guidelines for the management of energy development.  

3) Provide a conceptual framework for understanding the effects of energy 

development on ungulates  

4) Recommend a course of action for management oriented research on the 

effects of energy development on ungulates. 
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5) Develop a searchable electronic database of the literature including abstracts 

and research summaries, where possible, that will be useful in evaluating 

future energy development on ungulates.  

2.0 LITERATURE REVIEW METHODS AND SCOPE 

 Recent comparisons of literature reviews in ecology vs. those in the medical field 

revealed that ecological literature reviews often lack details of the methods used to 

search for studies, thus increasing potential bias in literature reviews, and made fewer 

efforts to review unpublished literature (potentially showing no effect because of the 

bias against negative results). Ecological reviews were also less likely to assess the 

relevance of the study in terms of quality of experimental design and made fewer efforts 

to quantitatively synthesize results using methods like meta-analyses (Roberts et al. 

2006).  

 I follow the recommendations of Roberts et al. (2006) herein, by describing the 

methods used to conduct the literature review on the effects of energy development on 

bighorn sheep, elk, mule deer and pronghorn (as well as woodland caribou). I also 

assess rigor of study design following methods described below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Study area for 
the literature review of 
the effects of energy 
development on 
ungulates, BLM 
(2003a,b). This review 
focuses on areas in the 
Powder River Resource 
Management planning 
(RMP) area, the Big 
Dry RMP, the Judith 
Valley/Phillips RMP, the 
West-Hi Line RMP, 
Billings RMP, 
Headwaters RMP, and 
Garnet and Dillon 
RMP‟s.  
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2.1 Literature Review 

I conducted a literature search of energy-ungulate impact studies using a variety 

of electronic, on-line databases, personal communications, and management reports 

from the period from 1970 to the present. Databases included: ISI web of science, 

Google scholar, Absearch, BIOABSTRACTS, Biological Abstracts, Environmental 

Sciences, Dissertation Abstracts, Government resources, Geology abstracts and 

Forestry abstracts.  I searched databases using combinations of the following keywords: 

bighorn sheep, elk, mule deer, pronghorn, energy development, petroleum 

development, oil development, gas development, wildlife, ungulate, and the western 

states (e.g., Wyoming, Montana, Idaho, Colorado, Utah) as well as Alberta and British 

Columbia. From this list of potential scientific literature, I screened studies to include at 

least one large ungulate species preferably within the same types of habitats as present 

in eastern and central Montana. I focused on studies applicable to the BLM resource 

management planning areas identified in Fig. 3. See appendix A for a summary of the 

types of literature reviewed. 

To facilitate synthesis and review, from each study, I recorded information in the 

following categories: study area; methods, results, recommendations and implications. 

For each category I recorded the following variables: 

Study area 

 focal species, sex- and age-classes investigated  

 study area size, location, and duration of study  

 seasonal information (winter or summer range impacts),  

 vegetation communities (sage steppe, grassland, mixed, pine breaks, forests 
– foothills and mountain) 

Methods & Experimental Design 

 type of development (oil wells, gas wells, coal bed methane, coal bed natural 
gas, wind power, coal, other) 

 density of human developments (units/km2) 

 study design type (in increasing order of rigor starting with observational, 
correlative, comparative, experimental, pre- and post- data, before after 
control impact design (Underwood1997,Krebs1989)) and degree of replication 
(if any);  

 field methods (e.g., observational, aerial survey, pellet surveys, snow track 
surveys, telemetry)  

 response variables (e.g., group size, vigilance, habitat selection, population 
demography), and  
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 statistical methods 
Results  

 general results 

 effect size(s) (see meta-analysis section below),  

 sample size, and  

 measures of variation in the effect size;  
Conclusions  

 imitations, both identified by the authors, and this review 

 management recommendations 

 conclusions of each study 
 

I revisit concepts of experimental design in the discussion with recommendations for 

future adaptive management experiments about energy impacts on wildlife in Montana. 

Furthermore, because of the importance of roads, and the avoidance of them by 

ungulates in the literature (Lyon 1983, Rowland et al. 2004,Frair et al. 2007,Edge and 

Marcum 1985,McCorquodale et al. 2003,Rost and Bailey 1979), I report the mean 

distance or distance classes avoided by ungulate species in each study for 

observational and experimental studies. The effects of roads in general are a huge 

subject and have been the target of dozens of ecological reviews (Forman and 

Alexander 1998,Trombulak and Frissell 2000), which similarly classify impacts of roads 

as direct (mortality) or indirect (avoidance). Moreover, human recreation associated with 

roads is a huge management topic with many excellent reviews even in Montana (Joslin 

and Youman 1999), so I do not attempt to review this literature. In this review, I only 

focus on synthesizing quantitative studies about the distance at which ungulates 

avoided roads in habitats similar to eastern Montana. Broad recreational and road 

impacts are discussed, but only in the context of potential impacts of energy 

development.  
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3.0 RESULTS 

3.1 Literature Review Summary 

3.1.1 Species and publication type 

 I found 120 publications that met the search criteria and that I was able to locate 

for this review. However, not all of the literature was species specific or relevant to 

energy development, and are 

included in the literature 

database only for background 

reading. For example, studies 

of the cumulative effects of 

energy development on caribou 

in Alberta are included 

(Schneider et al. 2003), but not 

reviewed in detail here because 

the focus was on studies on the four main ungulate species. Literature reviews 

themselves were also not 

included in the literature review, 

often because we were reviewing 

the same limited literature, 

ironically. Finally, modeling or 

theoretical studies, while useful in 

the context of interpreting the 

results of field studies, were not 

included in the literature review of 

field studies that documented the effects of energy development on wildlife. Thus, of the 

120 or so studies assembled, 70 

were direct field studies that 

investigated aspects of energy 

Fig. 2 & 3. Proportion of the studies that directly 
studied aspects of energy development on wildlife 
(n=70) by 2) publication type and 3) species, 
including literature reviews as a category.  
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development or more broadly human development or disturbance, on wildlife in habitats 

relevant to eastern Montana. 

 Of the 70 studies, almost 50% were peer reviewed scientific publications in the 

primary literature (Fig. 2). The second largest category were reports, 30% of all 

literature reviewed. Conference proceedings, specifically the Thorpe conference series 

prominent in the 1980‟s, constituted 11% of all literature, and a combination of book 

chapters, and graduate theses (MS, PhD) made up the rest of the sample. Considering 

graduate theses as peer reviewed, but conference proceedings, book chapters and 

reports as not, 53% of all literature was peer reviewed.  While other authors consider 

graduate theses as unpublished, I disagree with this view, especially in contrast to 

management reports that undergo variable and undocumented peer review during the 

design, implementation, and analysis of the impacts of energy development. Peer 

review within a University department for a graduate thesis greatly exceeds the level of 

peer review for reports.  

 Elk were the most common ungulate in the literature reviewed the subject of 

study in 45 studies. Woodland caribou were the subject of 29 studies. Mule deer and 

pronghorn had a similar number of studies, 20 and 21, respectively, followed by Moose 

(4) and Bighorn Sheep (3). On average, each study examined the responses of 1.4 

species to energy development (Table 1), with the most common ungulate combinations 

being mule deer and pronghorn, or mule deer, pronghorn and elk. A surprising number 

of literature reviews have been conducted on this scanty literature, and these 

constituted ~12% of all studies considered here. 

3.1.2 Study design, methods, sample size 

From a study design perspective, most studies (n=27, 47%) used a weak 

observational approach where the impacts of the development were inferred from 

correlations between human use activity levels and measures of ungulate responses to 

treatments. I defined comparative studies as those that compared ungulate responses 

to development by comparing effects before and after development, but without a 

suitable control, obviously a weaker design than with a control. Comparative designs 

were used in 19% (n=11) of the studies. I defined experimental designs where effects 
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were compared between an impacted and control group at the same time, so that the 

control was contemporaneous. However, in this design, effects of development before 

and after development are not discernable. To tease apart impacts before and after an 

energy development, only 10 studies (18%) used the most powerful experimental 

design, a before-after-control impact design (Underwood1997,Krebs1989). Half of both 

the comparative and experimental studies utilized a before-during-after study design, 

where the effects of the energy development phase was contrasted with both pre- and 

post- data. This was the most powerful design for determining the short term impacts of 

development on ungulates.  No studies were replicated at the level of impact type: 

all studies used only 1 replicate. I return to the issue of experimental design in the 

discussion with recommendations for MTFWP.  

A review of the most common methods used to evaluate the impacts of energy 

show a higher frequency of telemetry studies compared to other methods; 51% of all 

studies were conducted using radio telemetry, and most of these (95%) were with 

conventional VHF telemetry, GPS collars the other 5%. Approximately 51% of all 

studies used radio telemetry, collaring a total of 1537 animals throughout their duration, 

the most common of which were elk (48%), followed by pronghorn (26%), mule deer 

(18%), and lastly, caribou (4%). 

There were no published studies of 

moose or bighorn sheep responses 

to energy development using 

radiotelemetry. The most common 

alternate methods to assess effects 

of humans on ungulates were aerial 

surveys (15%) and pellet or sign/track 

surveys (20%). 

  The average sample size (n) 

used in energy-wildlife studies was 

57.5, the median 39.5, and this did not 

differ much from the sample size of only 

telemetry studies, where sample size in 

Fig. 4. Frequency distribution of study 
area sizes for studies on the effects 
of energy development on ungulates 
(n=44). 
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this case correctly represents the individual animal sample unit (Gillies et al. 2006,Otis 

and White 1999), not the number of sub-sample telemetry locations. However, 

considering the number of telemetry locations per individual animal, these were often 

quite low for VHF collared animals, with an average of only 22 VHF telemetry locations 

obtained per animal per study; for seasonal (winter, calving, summer) this sample size 

is even smaller. Across all studies, over 2000 ungulates were radiocollared to evaluate 

impacts of energy development, with mortality rates that ranged between 0% and 15% 

(mean 4% reported from n=10 studies, or approximately 80 mortalities). 

Psuedoreplication (Hurlbert 1984) was a common problem in all studies. 

Approximately 30% of all studies committed psuedoreplication where enough data was 

presented (i.e., clear experimental design, sample sizes, etc.) were sullied somehow 

with pseudoreplication issues. Common pseudo replication occurred when authors 

confused the number of telemetry locations with the true sample unit, the individual 

animal. Other common instances of pseudoreplication were with pellet surveys or track 

count surveys.  

 Oddly, studies often failed to report the study area size, a key parameter in 

ecological studies– for example, study area size influences ungulate densities, spatial 

scale, and the density of disturbance. In the discussion I review this critical problem of 

scale. Where study area size was reported (n=56), study area size ranged from 26km2 

to 190,000 km2. Studies of boreal woodland caribou populations were the largest, 

averaging 28,000 km2 (range 225 – 190,000km2), and were statistically larger than all 

other ungulate species study areas (ANOVA P-value <0.01). Not including caribou, the 

largest study area size in the lower 48 was 15,000km2 in Wyoming (Sawyer et al. 

2005b), and there were no differences amongst species (ANOVA, P>0.3). However, 

mean study area size was strongly left-skewed; while the mean study area size appears 

large, 3382km2, the median was significantly smaller, only 798km2, shown in Fig 4.  This 

area is equivalent to a 15km2 radius circle. 

 

Table 1. Summary statistics for literature on the effects of energy development and 
human disturbance on ungulates, n= 126 studies. 

Metric Mean 
 

Median 
 

Range StDev 

Sample size 57.5 39.5 4-223 53.6 
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No. of collared animals 
in telemetry studies 

58.7 
 

34.2 4-223 60 

Number of telemetry 
locations/animal 

22 17 1-55 ?? 

Population size 3950 
 

1000 35-48000 22058 

Study area size 3882 km2 798 26-20000 5924 
Study duration 2.7 years 2.1 0.15 - 11 2.28 

 
 The population size of inference for ungulates affected by energy development in 

the studies reviewed averaged 3950 animals, again, with a left-skewed distribution 

resulting in a much lower median of 1000 animals. The range of population sizes of 

ungulates impacted ranged from 35 to 48000, for mule deer in the Upper Green River 

valley of Wyoming (Sawyer et al. 2005b,Sawyer et al. 2002). From a sampling 

perspective, then, the average telemetry-based study sampled a mean of 1.5% of the 

population present, or a median of 4% of the study population of inference.  

Study duration was also summarized across studies. Almost all studies were of 

extremely short, most often for 

the duration of active drilling 

activities, exploration, or mining 

development. Mean study 

duration was 2.6 years, and 

median duration 2.2 years. The 

range was basically 2 months to 

11 years. The longest running 

study, consisting of annual aerial 

surveys by (Hayden-Wing 1990), 

ran from 1979 to 1990 in the Riley 

Ridge area of Western Wyoming: 

the study is no longer running. 

The earliest study reviewed occurred in 

1969, when (Bruns 1977) conducted an 

observational study on pronghorn in SE 

Fig. 5. Frequency distribution of study area 
duration for studies on the effects of energy 
development on ungulates where duration was 
reported (n=56). 
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Alberta. Altmann‟s (1958) classic study was not strictly on the effects of energy 

development on ungulates. The majority of studies were conducted in two peaks, the 

second of which we are in now, and the first, during the 1980‟s (Fig. 5). These two 

peaks in studies correspond closely with the peaks in energy exploration and 

development in the last three decades (American Gas Association 2005, Oil and Gas 

Conservation Division 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Types of Energy Development 

Of the types of energy development studied, by far the most frequently studied 

activity was the effects of active seismic exploration or well drilling on an ungulate 

species (n=25, 31%). The next most frequent studies examined the effects of roads 

associated with oil and gas or forestry development on wildlife, followed by oil or natural 

gas well impacts on ungulates.  There was an even mix of studies that investigated the 

effects of human activity in general, mining, logging, and military overflights on 

ungulates. There were 4 studies specifically designed to be pre-development studies, or 

in areas specifically at the beginning of energy development (e.g., Sawyer et al. 2002, 

Fig. 6. Frequency distribution of study date for studies (n=60) on the effects of 
energy development on ungulates plotted against peak oil production in Montana 
(in millions of barrels of oil/year; source Oil and Gas Conservation Division (2006). 
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Amstrup 1978, Ihsle 1981), but either development has not occurred, or no follow up 

studies have been conducted yet (to the best of my knowledge).   

Moreover, careful reading revealed that of just the studies designed to 

investigate effects of energy development activities (n=56, nearly 70%) were reactionary 

and designed largely as consultancies to monitor and mitigate the environmental 

concerns of the development as a condition of the drilling or exploration permit (e.g., 

van Dyke and Klein 1996, Irwin 1984, Johnson 1980, Johnson  1987,Morgantini 1885, 

Horesji 1979). The remainders of 

the studies were designed to 

investigate the impacts of 

development on ungulates after 

the fact on an ad-hoc manner. 

There was not a single case of 

energy development and 

management-oriented research 

proceeding in an adaptive 

framework in a manner to 

directly feedback into 

management of energy 

development (see discussion). 

 Finally, from a vegetation 

community perspective, most studies 

were conducted in shrub-steppe 

vegetation communities and 

ecosystems (n=21, Fig. 7), followed by 

mountains (15), grasslands (11), and 

then pine breaks (e.g., Douglas Fir), 

boreal forest (caribou), foothills forests 

(e.g., Alberta), and other habitats such 

as present in Michigan.  

 Fig. 7. Vegetation communities in which 
studies on the impacts of energy development 
on ungulates were conducted (n=69). 
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Fig. 6. Types of human disturbance and 
energy development studies that investigated 
impacts on ungulates (n=49). 
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3.2 Elk (Cervus elaphus) 

 I now summarize, by species, the results of individual studies reviewed, 

commenting on their location, species, study designs, methods, and general 

conclusions and especially, limitations. Results by species are then summarized in a 

table at the end of each of the main species reviewed in this review.  

 

3.2.1 Sagebrush Steppe and Grasslands 

In perhaps the longest conducted surveys of ungulate response to natural gas 

field development  (Hayden-Wing 1990) summarized results of 11 years of aerial survey 

monitoring of elk populations on two elk ranges in southwestern Wyoming (Snider Basin 

and Graphite Hollow) that were developed for oil/gas wells. Vegetation types included 

sage-steppe, grassland, pine breaks and mixed communities. They surveyed elk 

annually on winter range and spring calving ranges pre construction, during, and 

afterwards, with no control sites for comparison. Elk avoided areas during the 

construction phase on both the winter and calving ranges, but reoccupied these areas 

after intense construction ended, although variation in the degree of avoidance was high 

over time. Also in the Snider basin area of Wyoming, in 1978-80, (Johnson 1980) 

conducted an observational study of the effects of natural gas well development on elk 

using photo cameras, pellet surveys, and aerial and ground surveys. Elk were affected 

by activity on the access road, avoiding the area; cows moved calves at earlier age; elk 

were displaced away from drilling rig in 1979. However, a lack of pre-drilling data 

hampered interpretation, and the study was reactively designed in response to 

development. 

Similarly, elk avoided roads, active gas and oil wellsites the most during summer 

months in the sage-steppe ecosystem of the Jack Marrow Hills, WY (Powell 2003), 

strongly selecting habitats greater than 2000m from these features. Avoidance of roads 
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and wellsites declined in the fall, winter and spring when elk only avoided areas <500m 

surrounding human development. During calving (15 May – 30 June), elk avoided areas 

<1000m from roads and wellsites. This study was observational, and only examined 

responses of elk following development, but makes the important observation that elk 

continued to show avoidance of wellsites long after the construction phase had been 

completed.  

In Colorado, (Johnson 1986) conducted an experimental (n=1 replicates) study of 

the effects of coal mine development on elk over a 5-year period from 1981-1984. 

Vegetation types were a mix of sage steppe, grassland, shrub, aspen and conifer. 

Johnson (1986) compared calving home ranges, site fidelity, habitat use/selection, 

noise tolerance and cow/calf ratios between a treatment mining area and control areas 

within 20 miles of the mining development, and reported no statistical differences 

between any variables, and concluded that coal mine development did not influence elk. 

However, there was some evidence that elk near the coal mine displayed lower fidelity 

(5796m between successive home range centroids between years) than control elk 

(3723m). These results are consistent with displacement by the coal mine. Potential 

limitations of the study are confounding between the putative control and treatment 

locations which were close together and between which radiocollared elk mixed 

throughout the study (Johnson 1986). Regardless of these problems, elk selected 

reclaimed coal mine sites in proportion to their availability in the landscape, neither 

selecting nor avoiding reclaimed areas, emphasizing the importance of reclamation 

activities. 

Ward (1986) conducted another observational, non-experimental, study on the 

effects of seismic exploration on elk in the known recoverable coal resource area of 

south central Wyoming over 4 years from 1981-84.  Vegetation types were sagebrush 

steppe and grasslands.  Ward (1986) used ground telemetry from an unreported 

number of elk with an unreported number of telemetry locations combined with an 

unreported number of ground and aerial surveys to examine the distance of elk to 

development. Ward (1986) also measured sound levels (dbA) at various distances from 

seismograph equipment. Elk were affected most by foot traffic; distance of elk 

displacement depended on line-of-sight of the elk to the disturbance. In places with no 
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topological barriers, elk displaced about 3.2 km, but where terrain yielded topological 

barriers, elk displaced 800 m. Following the cessation of seismic exploration, elk 

returned to areas of disturbance a few days after activity was concluded.  Ward (1986) 

concluded that elk in this study did not seem to be affected detrimentally.  However, 

where winter range habitat is limited, these disturbances have the potential to have 

major effects on elk. Limitations of this study are obvious; the number of collared elk, 

details of aerial or ground surveys, and statistical tests were all absent.  

Hiatt (1981) conducted an observational study of the effects of drilling a single 

well on Crooks Mountain in Wyoming during late winter 1981 in response to concerns 

over drilling effects on ungulates in winter range. Hiatt (1981) used track counts, ground 

and aerial surveys and time-lapse camera‟s to quantify the response of elk and mule 

deer to development. The study was putatively a before-after comparative study, but 

was critically limited by only 9-days pre-development monitoring – the report gives the 

impression that this was an extremely reactionary study conducted at the 11th hour to 

ensure something was done to address environmental concerns. Hiatt (1982) concluded 

that both elk and mule deer shifted their ranges away from the well site, and that there 

was no evidence of avoidance of the access road by either species.  Limitations of this 

study are obviously the scanty pre-treatment data, lack of control, and lack of 

replication. Remote cameras were of limited utility, collecting few observations and 

being limited by the small number of cameras deployed.  Moreover, statistical analyses 

were psuedoreplicated at the level of the individual track-count, which were collected 

along transects – the true sample unit. Therefore, it is unclear whether the conclusions 

from this study are warranted, although it is consistent with previous literature that 

shows a decline in ungulate use during drilling operations. 

Van Dyke and Klein (1996) also studied the effect of active drilling operations on 

elk in the grassland and shrub-steppe communities near Line Creek Plateau in Montana 

by comparing seasonal an annual home range characteristics and use of cover for 10 

VHF collared elk from which they obtained 474 telemetry locations over the period from 

1988 to 1991. They assumed this represented the population of 120 elk that used the 

entire study area. Van Dyke and Klein (1996) compared home range size, home range 

centroid, and coarse grain habitat use by elk before, during, and after development, 
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each phase lasting 1 year.  Elk in both the study site and the control site had 

significantly different distributions within the ranges, suggesting a normal seasonal 

change rather that effects of drilling.  In terms of resource selection, elk at the study site 

were rarely found outside of forested areas during the day while activity was taking 

place at the well sites. Elk responded to disturbances by shifting their use of the range, 

centers of activity, and use of habitat.  Elk maintained a physical barrier between 

themselves and the well site during active drilling, and the authors concluded that elk do 

not abandon their home ranges during well site development, and quickly return to pre-

development conditions following development.  

Unfortunately, limitations of this study are many; 1) small sample sizes per elk to 

accurately estimate seasonal and annual home ranges – with only 474 locations/10 elk/ 

2 seasons (winter/summer) over the ~4 years of the study yields approximately 6 

locations, naively, per elk per season-year – woefully low for reliable home range and 

centroid estimation (Powell 2000); 2) scale – this study evaluated the effect of a single 

oil well in an approximately 500km2 area (note study area size was not presented, but is 

estimated from figures in the paper), a density of 0.003 wells/km2, a trivially low density 

for such a huge area!; 3) the choice of large-scale home range analysis methods to 

evaluate the results of a single small-scale concentrated development also limits the 

strength of inference. The utility of this study to current oilfield development, where 

multiple, often dozens of simultaneous wells are being drilled in an existing matrix of 

developed oil fields is questionable, and future studies should pay particular attention to 

this issue of scale. 

In a recent and well designed observational telemetry study of elk resource 

selection in a grassland/shrub-steppe ecosystem in southwestern Wyoming, Sawyer et 

al. (2007) examined the response of elk in open habitats to distances to roads. This 

study system is important because while the area has low densities of oil and gas 

development at present, this region is considered to have moderate to high oil and gas 

development potential (see Sawyer et al. 2007). Thus, this study represents a well 

designed pre-treatment study if development proceeds in the future, and is a valuable 

insight into elk resource selection in shrub-steppe ecosystems under relatively low 

development.  Sawyer et al. (2007) developed resource selection function (RSF, Boyce 
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and McDonald 1999, Manly et al. 2002,Boyce 2006) using telemetry locations from 33 

GPS collared female elk during both winter and summer. Models were validated against 

55 VHF collared elk telemetry locations. Elk selected for summer habitats with higher 

elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, 

moderate slopes, and away from roads. These results were generally consistent with 

the results of McCorquodale et al. (1986) in the shrub steppe of eastern Washington. 

Winter habitat selection patterns were similar, except elk shifted to areas closer to roads 

than in summer, indicating a strong response of road avoidance during summer. 

Results suggest that large (1,000) hunted elk populations can meet their year round 

forage and cover requirements in nonforested regions with low traffic, a range of 

elevations and shrub communities. They conclude that management of roads and 

related human disturbance is an important consideration for managing elk populations, 

especially in open habitats. 

3.2.2 Mixed communities 

In the mixedwood forests of Upper Peninsula of Michigan, (Knight 1981) studied 

the effects of initial seismic exploration and oil well development on reintroduced elk 

before and during development using radiotelemetry. This was the initial phase of oil 

well development and the study had very little previous energy development. Elk of all 

ages and sexes moved significantly greater distances in the presence of seismic 

exploration than when no disturbance was present; i.e. there was a significant negative 

correlation between distance to disturbance and mean daily movements of elk.  Terrain 

and vegetation type was not a significant factor in elk movements.  There was no 

significant difference in elk home ranges with/without seismic disturbance.  Once 

wellsites were installed, there was no correlation found between distance to disturbance 

and mean daily movements.  Elk appeared to become habituated to the stationary well 

sites, but not to the unpredictable seismic exploration activities. Knight (1981) 

concluded that seismic activity significantly affects the movements but not the 

distribution of elk; oil well activity does not significantly affect the movements nor the 

distribution of elk.   
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The effect of hydrocarbon development on elk and other wildlife in Northern 

Lower Michigan was further studied by Bennington et al. (1981) for 1 year from 1979 to 

1980 using aerial surveys and ground track surveys. Wellsite densities were among the 

higher reported in the literature, approximately 0.22/km2 (exception being Frair et al. 

2005), and most wells were active and in production.  Despite a regional increasing 

population "trend" over previous 5 years, the subregional trend was a short-term 

decrease in elk activity following oil drilling, as revealed by significantly lower number of 

tracks at drilling vs. nondrilling sites. At each wellsite, Bennington et al. (1981) found 

temporary (2-4 wk.) relocation after development. Overall, Bennington et al. (1981) 

concluded there was no significant difference between pre-drilling and post-drilling 

activity at the given well density has only short-term relocation effects. Limitations of the 

study are potential pseudoreplication in the number of sub-transects analyzed at each 

site (the correct sample unit), and that the intensity and coverage of the ground and 

aerial methods varied from previous Michigan government surveys. Moreover, the study 

was an observational-correlational study, with no replication, control, or comparative 

design. 

3.2.3 Mountains and Foothills 

In the Bridger Teton National Forest in 1983, Irwin (1984) examined the 

preliminary effects of seismic exploration on 18 collared elk. Seven of 18 elk were 

displaced from their spring range after seismic activity was conducted.  The elk did not 

return during the activity, but instead migrated to the summer range.  Four other elk 

stayed on the spring range, but maintained a 1-2 ridge barrier between them and the 

disturbance.  Limitations of this study were lack of comprehensive pre-data, and unclear 

statistical analyses. 

In a follow up study in the Bridger-Teton National Forest during summers of 

1983-1985, Gillin (1989) studied the effects of multiple seismic exploration events on 21 

radiocollared adult female elk in control and treatment groups. Over the spring and 

summer period, Gillin (1989) collected an average of 134 locations/events from 9 

collared elk in the control group, and 184 locations from 10 elk in the treatment group.  

Elk avoided active exploration on average by 1.2km in spring and summer. They also 
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changed their habitat selection to select closed conifers 18% more and higher slopes 

70% more (away from low elevation seismic) during seismic exploration than the control 

period. The author concluded that elk avoid seismic exploration, but do not shift their 

home range during exploration, but merely redistribute use within their home range.  

The impacts of seismic exploration on elk were also investigated in the Badger 

Creek – South Fork of Two Medicine River of north central Montana during spring, 

summer and fall of 1981 by Olson (1981). Olson used a limited experimental design 

with small numbers of animals, comparing the effects of seismic exploration on 4 

collared female elk against 2 collared elk in a „control‟ area. Response variables were 

movement distances between aerial telemetry locations. Olson (1981) found that 

distances moved between successive aerial locations were 50% greater for elk affected 

by seismic exploration, and drew firm recommendations for restrictions to be placed on 

development based on these findings. However, no statistical tests were conducted, 

and more troubling, the metric used, distance between locations, was not corrected for 

the amount of time between locations to a movement rate. Thus, distance between 

locations is really a function of both disturbance level and days between locations, and 

there may have been an important bias for greater frequency of relocations for the 

„treated‟ group (mean of 2.8 locations/month) vs the „control‟ group 0.5 

(locations/month). Because movement rates scale inversely with relocation interval 

(meaning that the longer the movement interval between locations, the „lower‟ the 

movement rate), the observed difference between the treatment and control group is 

almost certainly a function of sampling design, not treatment effects. Regardless, with 

ridiculously low sample sizes (n=6 total elk), little reliable inference can be drawn from 

this study. 

In a simulated mining study on elk calves, Kuck et al. (1985) studied the 

responses of elk calves through radiotelemetry to three treatments of mining, human 

disturbance, and a control group. Kuck et al. (1985) captured and collared 25 elk in the 

Dry Ridge area of Idaho, and compared movement rates, resource selection, and calf 

survival between the groups during summer for 2 years. Disturbed elk moved greater 

distances, showed strong selection for closed conifer, had reduced fidelity, but there 

was no difference in survival rates between treatments for calves. The authors conclude 
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that mining exploration will likely cause abandonment of spring calving ranges, but fell 

short of being able to connect these changes in behavior to demography, most likely 

because of small sample sizes of collared elk calves (n=25). 

In a unique study, Morgantini and Hudson (1985) documented the effects of 

pipeline construction on movements of elk, moose, and deer in west-central Alberta. 

Using snow track surveys, Morgantini (1985) documented crossing attempts of 76 

ungulate groups of the pipeline during construction. The pipeline was a barrier for 

53.9% of ungulate groups that tried to cross them.  Elk appeared to be the most 

successful, while moose were the least successful.  Dirt berms did not appear to be a 

physical barrier to ungulates. The few encounters of ungulates and the pipeline during 

this study could be due to their avoidance of the development corridor at a larger spatial 

scale.  The pipelines did not alarm the animals that did come in contact with the 

pipelines, but did act as a physical crossing barrier.  The limitations of this study were 

the short duration, governed by the duration of construction, and the lack of information 

about the larger spatial scale and any broad-scale avoidance of the entire area (as 

found by many other studies) by ungulates. Regardless, Morgantini (1985) makes 

several practical recommendations to maintain periodic openings in pipelines under 

construction and even underpasses, or overpasses along pipeline to mitigate crossing 

barriers. 

In the closed conifer forested foothills west of Rocky Mountain House Alberta, 

Lees (1989) studied the movements of 7 radiocollared elk along a pipeline right of way 

to investigate the effects of recreational disturbance (hiking, ATV‟s, etc) along the 

pipeline during winter. Lees (1989) used radiotelemetry, track counts during winter and 

remote camera‟s in an observational study design. The results of this study were largely 

inconclusive, due to the small sample size of collared elk (n=7) and remote cameras 

(n=5). However, the snow track surveys, which included a much larger sample size of 

track crossing locations (n=598) showed stronger avoidance by elk of areas within 

350m of the pipeline right of way when human activity was high in the fall. Thus, human 

activity mediated the negative indirect effects of the pipeline on elk. This is the same 

study area of (Frair et al. 2007, Frair 2005), summarized below. 
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Finally, Berger (2004) did a literature review on the loss of migration amongst 

North American ungulates. In the Greater Yellowstone ecosystem, Berger documented 

75% declines in ungulate migration for mule deer, elk, and pronghorn due to long-term 

human caused habitat fragmentation and overhunting. Threats to remaining long-

distance migration include energy development, tourism development, sub/urban 

sprawl, highway mortality and habitat fragmentation. 

 

3.2.3 A Brief Review of Related Studies on the Effects of Human Activities Not 

Including Energy Development on Elk  

3.2.4 Elk-forestry relationships 

In a now-classic series of studies in 

seven replicated sites in Montana, (Lyon, 

1979, Lyon 1979, Lyon et al. , 1985, Edge et 

al. 1985, Edge and Marcum 1985) conducted 

long-term research into the responses of elk 

to logging, human recreational disturbance, 

and climate (Fig. 8). The management 

implications of these studies were 

summarized for MTFWP in Lyon et al. (1985), 

and have provided much of the basis for elk management in Montana ever since. While 

these studies did not specifically investigate the effects of energy development on elk, 

they laid the foundation of much of modern elk management in forested mountain 

systems in the Northwest. As such, their methodologies, approaches, and conclusions 

offer great insights to MTFWP for understanding the effects of energy development on 

ungulates in eastern Montana. Although conducted in differing habitats, as I synthesize 

in the discussion, the general results of avoidance of human activity demonstrated by 

these studies in forested mountain habitats might be expected to be greater in open 

habitats. Moreover, I suggest in the discussion that a similarly large scale and 

coordinated effort will be required to understand the effects of energy development on 

wildlife as these studies did for elk-forestry relationships 25 years ago. 
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Fig. 8. Locations of the seven replicate study sites in the Montana Cooperative Elk-

Logging study 1970-1985, reproduced from Lyon et al. (1985).  

 

 Over an eight year period from 1970 to 1977,  Lyon (1979a,b) used extensive 

repeat pellet count surveys to measure the response of elk to roads, cover, and weather 

in one of the study sites. A total of 2.5 km/km2 of pellet transects were sampled across 

the 215km2 study every year. Elk moved away from areas during active logging 

operations (Lyon 1979), and avoided areas adjacent to open forest roads especially 

when forest cover was low such as in open habitats (Lyon 1983). Lyon (1979) 

recommended reducing human activity on roads to enhance security for elk, and 

providing elk with a line of sight barrier between disturbances and refugia.  

 In another Montana study area, Edge (1982) and Edge and Marcum (1985) 

studied the annual response of elk to logging activities using 39 radiocollared elk by 

investigating aspects of home range habitat selection, distance to roads and human 

activity and cover. In the component of the study examining elk habitat selection as a 

function of human activity, vegetation type and cover, Edge (1982) found elk avoided 

forest roads with high human activity during all seasons, especially in the absence of 

cover from the disturbance provided by closed conifer forests and topography. Elk 

avoided areas within 750m of roads and 1000-1500m of active logging operations. Even 
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highly preferred foraging habitats were avoided within 500m of active logging operations 

and human activity of all types. Generalizing, Edge (1982) concluded that elk avoided a 

minimum of a 500m buffer from logging activity. In a unique comparison, Edge found elk 

were closer to active logging operations on weekends, when logging activities 

temporarily ceased, than during weekdays, showing a high degree of behavioral 

flexibility. During the hunting season, when human harvest pressure was greatest on 

forest access roads, elk avoidance of human activity increased to 2000m of roads. The 

recommended that road design avoid openings and take advantage of topography to 

benefit elk habitat effectiveness.  

In their home range study, Edge et al. (1985) found that given increased logging 

disturbance, elk did not expand their home range size. In terms of home range fidelity, 

elk in disturbed locations were 40% more likely to shift home ranges than the control 

group (home range fidelity coefficient for disturbed elk = 0.58, for control elk 0.76). 

Although differences were not statistically significant, this was likely due to the very 

small sample size used in this analysis; only 10 elk that were tracked between 

successive years experienced disturbance (In this case, however, the exact sample size 

used to calculate statistical tests was unclear, to avoid pseudoreplication, sample size 

should be n=10 elk, but for the general coefficient of fidelity, Edge et al. (1985) used 

n=62 fidelity coefficients not n=39 different elk). This confusion makes it difficult to 

conduct meta-analysis on these data.  

 Other studies followed Lyon (1979) to estimate pellet densities as a function of 

distances to roads across the western US. In Colorado, for example, Rost and Bailey 

(1979) studied elk and mule deer. Rost (1979) found increasing pellet densities of elk 

and mule deer with increasing distance from roads in their shrub steppe ecosystem.  

Rost (1979) found in Colorado that elk and mule deer avoided areas up to 200m from 

roads.  Lyon (1983) synthesized these results with the results of other studies to 

develop a general model of habitat effectiveness for elk that modeled % habitat 

effectiveness as a function of road density. Declines in habitat effectiveness were non-

linear – that is, much of the loss of habitat effectiveness occurred in the first 1.6km/km2 

of increasing road densities. This habitat effectiveness model, combined with similar 
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models for cover, formed the foundation of elk management in the western US for 

decades.  

Recent work has started to question the generality and assumptions of the Lyon 

(1983) road density models, which while beneficial for elk management, have only been 

tested infrequently. Rowland (2000) tested the generality of the Lyon (1983) road 

density model by comparing observed habitat effectiveness against expected, under the 

model in Starkey Experimental Forest and Range in northeastern Oregon. Rowland et 

al. (2000) used >100,000 telemetry locations from 89 collared female elk to develop 

habitat selection models as a function of 0.1-km wide distance bands from roads open 

to human access. The predicted number of telemetry locations, however showed only 

weak correspondence to the Lyon (1983) habitat effectiveness models. Simulation 

results demonstrated that the failure of the 

simple habitat effectiveness models was 

because of the spatial patterns of roads, a 

covariate not considered in the original Lyon 

(1983) models. To be fair, recognition of the 

critical importance about spatially explicitly 

habitat models and the role of spatial 

dynamics in management has only emerged 

in the recent decade [spatial model; spatial 

population dynamics; habitat fragmentation], 

yet these results cast doubt on the 

generality and value of these earlier, non-

spatial models. Regardless of these 

caveats, Rowland et al. (2000) reaffirms that 

the management of roads and human 

activity did influence elk in their study and 

should remain as a critical consideration in 

ungulate management, but that spatially 

explicit models are required to really 

Fig. 9. Portion of the study area for Frair 
(2005) and Frair et al. (2007) in the 
central east slopes of Alberta‟s forested 
foothills. Home ranges of selected elk 
shown in black, against seismic cutlines 
(grey lines) and well sites (dots). From 
Frair et al. (2005). 
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capture the response of elk to roads at large scales.  

Recent studies build on this paradigm shift in ungulate management that spatially 

explicit models are required to effectively mitigate the negative effects of human activity 

at large scales. In a follow up study also at Starkey experimental forest, Preisler et al. 

(2006) developed new spatially explicit methods, probabilistic flight response analysis, 

to analyze the effects of off-road vehicle recreation on elk movements.  Consistent with 

previous studies, Preisler et al. (2006) found that elk responded at relatively far 

distances >1000m to ATV recreation, and that elk movement speeds increased when 

closer to trails.  This study confirms the indirect effects of behavioral displacement by 

human activity on elk.  

 In the heavily developed foothills of Alberta, Frair (2005) and Frair et al. (2007) 

examined the responses of resident (and translocated elk, not discussed here) elk 

survival and movements to human activities, including seismic exploration cutlines, 

wellsites, and forestry. Their study area was 17,000km2 of lower and upper foothills 

consisting of primarily closed conifer forests that contained over 28,000km of seismic 

exploration lines and 7,000 wellsites, for average densities of 1.7 km/km2 of seismic 

lines and 0.4 wellsites/km2 ,(Fig. 4) on the higher end of many of the studies reviewed in 

this literature review. From a movement perspective, Frair et al. (2005) found that elk 

were more likely to move away from linear seismic lines, and forage and bed at greater 

distances, respectively, from seismic lines.  

To determine mechanisms driving elk movement patterns, Frair et al. (2007) 

studied survival of >200 radiocollared elk, detecting 104 mortalities (many of 

translocated elk) from 2001-2005. Elk survival decreased as a function of distance to 

seismic line (Frair et al. 2007), as a function of increased human caused hunting 

mortality and wolf predation, both of which selected to be close to roads (e.g. 

Hebblewhite et al. 2005b, Frair et al. 2007, Hebblewhite and Merrill 2008). But, 

importantly, humans and wolves use roads and seismic lines differently, roads being 

more heavily used by human hunters, and seismic lines being more heavily used by 

wolves. This trade-off likely occurred because of the indirect effect of wolf avoidance of 

human activity; wolves themselves being hunted by humans (see Hebblewhite and 

Merrill 2008, Hebblewhite et al. 2005a). From an elk perspective, however, for each 
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100m increase in distance from seismic lines, elk were 0.68 and 0.78 times less likely 

(reported as odds ratios, odds <1 are reduced) to die from wolves and humans, 

respectively. Thus survival increased with distance away from seismic lines. When 

considering roads, however, mortality risks contrasted for wolf and human hunting. For 

every 500m increment farther from roads, elk were 0.84 less and 1.34 times more likely 

to die from human hunting and wolf predation, respectively. Failing to separate out 

mortality sources masked the different responses to different types of mortality and how 

different predators (human, wolf) used the landscape differently.  

 3.2.5 Effects of Hunting and Recreation on Elk 

The mechanism behind road avoidance by elk in the above studies was 

hypothesized to be due to increased hunting mortality associated with open roads. This 

mechanism has been corroborated by numerous studies across western North America 

since (Unsworth et al. 1999, Frair et al. 2007, Cole et al. 1997, McCorquodale 2000).  

As an example, Morgantini and Hudson (1980) studied the effects of human disturbance 

on elk in a montane grassland in the eastern slopes of Alberta from 1977-1979 using a 

combination of observations, pellet surveys, diet studies, and telemetry on radiocollared 

elk. Their study area contained energy development, but this study specifically focused 

on the effects of hunting pressure on elk. They found, similar to the studies in Montana, 

that elk avoided human activity more during the hunting season, shifting to denser cover 

farther from roads, and adapted their activity patterns to forage only during dusk and 

dawn.  

Reasonably strong experimental evidence supports an increased mortality risk to 

elk from human hunters on roads. Cole et al. (1997), tested the effects of an 

unreplicated (n=1) experimental road closures on survival of Roosevelt elk (Cervus 
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elaphus nelsonii) in Oregon from 1991-1995. Cole et al. (1997) determined home range 

size, movement rates, and survival differences between the pre- and post- road closure 

periods for 41 radiocollared adult female elk in a before after design without an 

contemporaneous control. By removing access to 128km of BLM roads (35% of roads in 

study area), Cole et al. (1997) documented a 12% reduction in home range size, a 18% 

reduction in daily movements, and a 7% reduction in mortality for elk, although the 

difference in survival  was not statistically significant with only 6 mortalities observed 

during the study. Limitations of the experimental design are 1) the lack of adequate 

controls for the treatment period – improvements to adult survival and reductions in 

home range size or other variables could have been because of more favorable climatic 

conditions (spring precipitation, etc.) or other unmeasured variables; 2) small sample 

sizes for making strong population inferences. In survival estimation, the number of 

mortalities strongly determines the level of confidence in survival estimates, and in long-

lived ungulates with high annual survival rates, determining population level impacts 

requires substantial sample sizes. Despite the fact that this study is often cited as 

compelling evidence for the beneficial effects of road closures, these two weaknesses 

reduce the scientific merit of this study. Similar studies in Montana and elsewhere also 

examined the effects of hunter road restrictions on elk, including Basile (1979), but few 

made the difficult but important connection to demography that Cole et al. (1997) 

attempted.  

Human recreation besides human hunting from roads can also affect elk 

populations, a subject that has been the focus of numerous studies and literature 

reviews in itself (Bjornlie and Garrott 2001, Cassirer et al. 1992, Joslin and Youman 

1999,Oliff et al. 1999). Elk and other wildlife may view human recreation as a form of 

predation risk even without direct mortality because of indirect behavioral mechanisms 

(Frid and Dill 2002,Geist 2002). For example, Millspaugh et al. (2001) showed clear 

physiological stress responses of elk to proximity to roads and when in areas with 

higher road densities. Here, I only review a few recent key studies that exemplify proper 

experimental design and provide a beacon of scientific rigor to biologists considering 

improving studies of the effects of energy development on wildlife.   
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In a series of exceptionally well planned studies in the Beaver Creek and Vail 

areas of Colorado, Phillips and Alldredge (2000) and Shivley et al. (2005) conducted a 

well designed experimental (albeit only n=1 replicate) test of the effects of 

spring/summer hiking recreational disturbance on elk on calving and summer ranges. 

Phillips and Alldrege (2000) and Shivley et al. (2005) maintained a total sample of 75-85 

radiocollared adult female elk across both the control and treatment areas and applied 

hiking disturbance to the control group in a before-after-control-impact (BACI) design as 

follows. In 1995, no treatment was applied to the treatment area (before), and the 

disturbance was applied in 1996 and 1997 (see discussion), then not applied in 1998 

and 1999. In the control area, no treatments were applied.  They then compared the 

effects of hiking disturbance on calf:cow ratio‟s, a key indicator of population 

performance in ungulates and elk in particular (Raithel et al. 2007,Gaillard et al. 2000).  

Calf:cow ratio‟s were similar before hiking disturbance was applied in 1996. 

Calf:cow ratio‟s steadily declined for the two years of treatments for an average 

reduction in calf:cow ratio of 0.173, or 17 calves:100 cows, (95% CI: -0.32 to -0.03). 

Population modeling revealed that this reduction in calf survival could reduce population 

growth rates from 7%/year to 0%/year, confirming the substantial negative impacts of 

human disturbance during spring and summer to population dynamics of elk. On the 

basis of this exceptionally well designed study, the authors of both studies make strong 

recommendations to protect spring calving habitat, concluding “to ignore potential 

effects of human-induced disturbance to elk during calving seasons is to risk declining 

reproductive success in elk populations” (Phillips and Alldredge 2000).   

 Extending these results to the effects of human development in general, an 

observational study of the effects of increased ski resort development in the Vail area of 

Colorado (Morrison et al. 1995) showed that during ski area development, when human 

disturbance was the highest, elk avoided human activity and the development site more 

than afterwards. Elk use after development was still lowest when human activity was 

highest, indicating that while elk habituated to development to some degree, there may 

be long term negative impacts. These two examples illustrate the benefits of conducting 

well designed experimental studies to guide the interpretation of less intensive 

observational studies. 
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Table 2. Review of scientific literature on the effects of energy development on Elk, summarizing study authors, location, vegetation 
type, species (Aa- Antilocapra sp., AlAl – Alces alces, Ce- Cervus elaphus, Oh- O. hemionas, Oc- Ovis canadensis),  whether the study 
was peer reviewed or not, study area size, duration, development type, study design and sample size, general results and 
management recommendations.  
Authors, 
location, Veg. 
type 

Spp.  Peer 
Review 

Study Area 
Size, 
Duration 

Developme
nt Type 

Study design 
& size 

General Results Management Recommendations 

Bennington et 
al. 1981    MI, 
Mixedwood 

Ce No 512 km
2
  

and 1.4 
years 

Oil 
drilling/well 
pumping 

Observational, 
aerial surveys, 
track surveys, 
n=N/A 

Short-term decrease in activity 
following oil drilling, temporary (2-4 
wk.) relocation after development, 
no significant diff. between pre-
drilling and post-drilling activity. 
 

Avoid high impact habitat sites such as 
calving grounds; habitat mitigation 
required. 

Cole et al. 
1997    OR, 
Mountain 

Ce Yes 972 km
2
 

and 3 years 
Roads and 
human 
hunting 

Experiment, 
radio-
telemetry, 
n=41* 

Core area and home range size, as 
well as movement rates decreased 
and elk survival increased with 
experimental road closures. 
 

Increase road removal and road 
management areas, decrease illegal 
hunting on open roads, restrict human 
access to roads. 

Edge et al. 
1982    MT, 
Mountain 

Ce Yes Unk, 5 
years 

Logging Observational, 
radio-
telemetry, 
n=36* 

Avoided open habitats and logging 
especially in areas of high human 
activity. 

Construct roads with cover and 
topography in mind, manage human 
recreational access, greatest impact in 
summer. 
 

Edge et al. 
1985    MT, 
Mountain 

Ce Yes  
Unk, 5 
years 

Logging, 
human 
recreation 

Observational, 
radio-
telemetry,  
n=39* 

Elk did not change home range size 
or fidelity with logging. 

Logging activities limited to unoccupied 
seasonal habitats & logging restrictions 
the minimize time and overlap with elk 
winter ranges. 
 

Frair et al. 
2007    AB, 
Foothills 

Ce Yes 17000 km
2
  

and 5 years 
Siesmic, 
roads, wells, 
forestry 

Comparative, 
GPS telemetry, 
n=40 resident 
elk 

Mortality increased closer to roads 
by humans, closer to seismic 
cutlines by wolves. Landscape-scale 
changes from cumulative impacts in 
wolf and human predation risk 
survival. 
 
 

Manage for lower human use on roads 
all year to improve elk survival. Impacts 
were cumulative with other land use 
changes from forestry. 
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Table 2. Cont.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review 

Study Area 
Size, 
Duration 

Develop-
ment Type 

Sample design 
& size 

General Results Management Recommendations 

Frair 2005 Ce Yes 17000 km
2
  

and 5 years 
Seismic, 
roads, wells, 
forestry 

Comparative, 
GPS radio-
telemetry, 
n=40 resident 
elk 

Effects of roads were compounded 
by attraction to clearcuts associated 
with roads, elk avoided clearcuts 
within 200m of a road. Road 
network design became increasingly 
important as road density increased 
and accounted for as much as 30-
55% of the change in mortality risk 
 

Availability of core areas declined to 
50% above road densities of 0.5-
1km/km

2
, and elk could not tolerate 

road densities >1.4km/km
2
. Road 

network design that minimized roads 
and restricted human access could 
minimize risks to elk. 

Gillin 1998    
WY,  Mountain 
 
 
 
 

Ce 
 
 
 
 
 

Yes 
 
 
 
 
 

 Unk, 2.2 
years 
 
 
 
 

Seismic 
exploration, 
roads 

Experiment, 
radio-
telemetry, 
n=21 

Elk were temporarily displaced 
during and after seismic activity for 
up to two weeks, but returned later. 

Seismic spaced min 2, max 7-10 days 
apart; designated helicopter flight 
corridors w/ altitudes > 150m; avoid 
calving areas, foraging areas and open 
meadows;  spring impacts greatest. 

Hiatt et al. 
1982    WY, 
Mountain 

Ce, 
Oh 

No 101 km
2
  

and 0.25 
years 

Oil well Comparative, 
radio-
telemetry,  
Unk 

Elk and mule deer shifted home 
ranges away from the well site, did 
not avoid access road.  
 

Late winter spring were the greatest 
impact seasons 

Hayden-Wing 
Associates 
1991    Review 

Aa, 
Oh, 
Ce 

No   Gas, oil, 
seismic 
exploration 

Review, n=N/A N/A, Literature review Recommend restriction of exploration 
on occupied winter range from Nov 15 
to April 30 as a precautionary principle 
Winter impacts greatest 
 

Hayden-Wing 
Associates 
1990    WY, 
shrub steppe 

Ce No 96 km
2
  

and 11 
years 

Active wells Comparative, 
aerial elk 
surveys, n=11 

No significant difference in elk 
population size over 11 years in 
response to drilling, but changes in 
distribution varied widely.  

Need for long-term studies; 
recommended putting wells in low 
visibility areas; avoidance of calving and 
winter ranges 
 

Irwin and Gillin 
1984    WY, 
Mountain 

Ce No  Unk, 1 
years 

Seismic 
exploration 

Observational, 
radio-
telemetry 
n=21 

Elk partially avoided calving ranges 
after seismic, migrating to summer 
range.  Elk avoided disturbance 
using topography and cover.  

Restrictions on development during 
calving on calving ranges, road 
alignment should minimize visibility of 
the road using cover and topography. 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 41 

Table 2. Cont.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review 

Study Area 
Size, 
Duration 

Develop-
ment Type 

Sample design 
& size 

General Results Management Recommendations 

Johnson 1980    
WY, Mountain, 
sagebrush 
steppe 

Ce No  Unk, 1 
years 

Oil and gas 
wells. 

Observational, 
aerial 
telemetry & 
aerial surveys, 
n=4-56 
 

Elk were affected by activity on the 
access road; cows moved calves at 
earlier age; elk were displaced away 
from drilling rig in 1979. 
 

Minimize drilling activities in spring and 
winter range, road mitigation required. 

Johnson and 
Wollrab 1987    
WY, sagebrush 
steppe 

Ce No  Unk, 8  
years 

Natural gas 
field 

Comparative,  
radio-
telemetry, 
n=16  

80% of surveyed elk were on gas 
field prior to drilling; only 39% were 
on the field during drilling.  Calving 
ground was also abandoned during 
the intense drilling. 
 

Avoid drilling on calving and winter 
ranges.  

Johnson et al. 
1986    WY, 
mixed 

Ce No 25.9 km
2
  

and 3.25 
years 

surface coal 
mine 

Experimental, 
radio-
telemetry 
n=64* 

All measured variables showed no 
significant difference between 
control and mine study groups, 
winter impacts greatest 
 

None. 

Knight 1981    
MI, 
mixedwood 

Ce Yes 56 km
2
 and 

1 years 
Seismic 
exploration; 
oil well 
drilling 

Comparative, 
radio-
telemetry 
n=12 

Elk moved away from seismic: 
terrain and vegetation type had no 
effect.  No significant difference in 
elk home ranges with/without 
disturbance, no correlation between 
distance to disturbance and mean 
daily movements.           
                                                                                                                                               

Need to study effects of pipelines on 
wildlife, timing restrictions for seismic 
exploration to avoid winter range and 
calving. 

Kuck et al. 
1985    ID, 
Forests 

Ce Yes 350 km
2
  

and 2 years 
Simulated 
mining & 
human 
disturbance 

Experimental, 
radio-
telemetry 
n=25 

Disturbed calves moved greater 
distances, used larger areas, showed 
greater use of coniferous forest, and 
lacked selection for favorable 
physiographic parameters. Cow/calf 
pairs abandoned calving areas, 
Winter survival between groups and 
between years was similar. 

Development restrictions during calving, 
spring summer greatest impacts. 
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Table 2. Cont.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review 

Study Area 
Size, 
Duration 

Develop-
ment Type 

Sample design 
& size 

General Results Management Recommendations 

Lees  1989    
AB, Foothills 

Ce No  Unk, and 
1.25 years 

oil pipeline Observational, 
n=7* collars, 5 
cameras, 
n=568 tracks 
 

Telemetry:  inconclusive; tracks: 
avoidance of human impacts; 
cameras: inconclusive, fall impacts 
greatest 

Control public use and access through 
gating, improvements to forage on 
pipelines. 

Lyon 1979    
MT, Mountain 

Ce No 215 km
2
  

and 8 years 
logging; 
roads 

Observational, 
pellet surveys, 
n= Unk 

Elk consistently moved away from 
active logging. 

Manage roads to reduce human 
hunting, avoid logging in winter, spatial 
overlap with elk winter range. 
 

Morgantini 
and Hudson 
1980    AB, 
Mountain 

Ce No 35 km
2
  

and 0.5 
years 

Roads and 
human 
hunting 

Observational, 
behavioral 
observations, 
n= Unk 

Elk avoided roads in day, forage 
closer to them at dusk and dawn.  
Elk avoided the open grasslands 
near roads. 
 

Restrict human activity to reduce 
negative impacts of roads. 

Morgantini 
1985    AB, 
Foothills 

Alal, 
Ce, 
Oh, 
Ov 

Yes  Unk, 0.33 
years 

oil pipeline Observational,  
Snow track 
surveys, 
n=Unk 

Pipeline was a barrier for 53.9% of 
ungulate groups that tried to cross 
them.  Elk were least affected, 
moose the most impacted by the 
pipeline.   
 

Have periodic openings, underpasses, or 
overpasses along pipeline to mitigate it 
as a crossing barrier. 

Olson 1981    
MT, Mountain 

Ce No  503 km
2
 

and 0.5 
years 

Seismic 
exploration, 
natural gas 

Comparative, 
radiotelemetry
, n=4 

Elk avoided visual disturbances 
more than auditory; movement 
rates increased closer to 
disturbance.  
 

Winter activity should be kept to a 
minimum; have specified flight paths for 
helicopters to minimize disturbance 

Phillips and 
Alldrege 2000    
CO, Mountain 

Ce Yes 500 km
2
 

and 3 years 
Human 
recreation 
on trails. 

BACI, radio-
telemetry 
n=80 

Average calf production was 0.23 
calves/cow lower for elk disturbed 
by humans than control elk, reduced 
population growth rate 7%. 
 

Calving-season closures for all human 
activity in elk habitat. 

Powell 2003    
WY, sagebrush 
steppe 

Ce No 2521 km
2
  

and 3 years 
active oil 
and gas 
wells, roads 

Observational, 
n=40* 

Elk avoided active wells and roads 
by 2 km in summer, showing 73% 
less use than expected.    

Summer impacts greatest, seasonal 
road restrictions in summer habitat. 
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Table 2. Cont.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review 

Study Area 
Size, 
Duration 

Develop-
ment Type 

Sample design 
& size 

General Results Management Recommendations 

Rowland et al. 
2000    OR, 
Starkey, 
Mountain 

Ce Yes 77.6 km
2
 

and 3 years 
roads Observational, 

radio-
telemetry 
n=89* 

Elk consistently selected areas away 
from open roads in both spring and 
summer. Model predictions of 
simple habitat effectiveness models 
corresponded only weakly with 
observed habitat effectiveness 
values. 
 

Spatial distribution of roads must be 
considered for habitat effectiveness 
models for evaluating impacts. Summer 
road restrictions needed. Spring 
summer impacts greatest. 

Sawyer et al. 
2007    WY, 
shrubsteppe, 
grasslands 

Ce Yes 2517 km
2
 

and 2 years 
n/a Observational, 

GPS telemetry, 
n=33* (55 VHF 
collars in 
validation 
sample) 

Elk selected for summer habitats 
with higher elevations in areas of 
high vegetative diversity, close to 
shrub cover, northerly aspects, 
moderate slopes, and away from 
roads. Winter habitat selection 
patterns were similar, except elk 
shifted to areas closer to roads. 
 

Management of roads and related 
human disturbance is an important 
consideration for managing elk 
populations. Summer impacts greatest 

Shivley et al. 
2005    CO, 
Mountain 

Ce Yes 500 km
2
  

and 2 years 
Human 
recreation. 

BACI, radio-
telemetry, 
n=145 

Productivity rebounded following 
release from disturbance, and full 
recovery was achieved by the 
second post-disturbance year. 
 

Selective closures, or at least 
restrictions on recreational activity, may 
be warranted during calving season, 
when greatest impact occurred 

Van Dyke 1996    
MT, grasslands 

Ce Yes 500 km
2
  

and 4years 
Active oil 
well 

BACI, n=10 Minimal effect of drilling on elk 
home range use in a low density 
drilling area.  Elk used cover during 
drilling. 
 

 

Ward 1986    
WY, sagebrush 
steppe, 
grasslands 

Ce No   Unk, 
4years 

Seismic 
exploration 

Observational, 
few radio-
collared elk, 
surveys, etc. 
n=Unk 

Elk avoided human activity 
depending on line-of-sight; without 
topography, elk moved 3.2 km; with 
topography, 800 m. Elk returned to 
areas of disturbance a few days 
after activity was concluded.   

Road, wellsites should be aligned in 
areas of low visibility in topography out 
of line of sight. 
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3.3 Pronghorn Antelope (Antilocapra americana) 

3.3.1 Grasslands 

 In one of the earliest studies of pronghorn 

considered in this literature review, Bruns (1977) 

investigated general patterns of pronghorn 

habitat use, movements, and effects of human 

developments using ground and aerial 

observational methods including snow tracking 

and behavioral observations. Bruns (1977) 

focused on short grass prairie in south eastern 

Alberta from 1968-69 during an exceptionally 

severe winter. He found that pronghorn movements were restricted during winter 

months, and selected habitats that minimized snow depths during winter, had lower 

winds, and with softer snow that made pawing through snow to forage easier. Severe 

snowstorms caused rapid, long distance movements. Average herd sizes were 38 

animals. Pronghorn often used plowed roads as movement corridors, but suffered 

effects of habitat fragmentation from fences and gates. Management recommendations 

included barbless wire fences, pronghorn specific designs in important migration and 

travel routes, and keeping gates open to facilitate movements. 

Oil and gas exploration in the little Missouri grasslands have negatively impacted 

habitat for Mule deer, Elk, and White-tailed deer, reviewed in a study by Girard and 

Stotts (1986). Girard et al. (1985) summarized the effects of energy development as 

impacts during development and exploration phases, chemical spills that upset sensitive 

prairie grassland and stream ecology, and displacement of wildlife species.  

Approximately 1% of the entire area considered was physically lost because of energy 

development, and an undetermined area surrounding development was avoided by 

these ungulate species. Girard (et al. 1985) emphasized how critical site reclamation 

was for sensitive grasslands, the critical task of suppressing non-native invasive weed 

species, the danger of saltwater pond (associated with drilling operations) blowout on 
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downstream systems, and the negative effects of H2S (hydrogen sulphide) on wildlife 

species. I return to this important and understudied area in the discussion. 

In a study that could be useful as a baseline to compare against development 

underway in eastern Montana, Armstrup (1978) studied the habitat use, movement 

patterns, and home range use of 102 pronghorns marked with VHF or visual collars on 

the border of Montana and Wyoming in and around the Powder River basin from 1976 

to 1977. Armstrup (1978) found wide variation in selection for vegetation types 

seasonally, and that selection was largely a function of available vegetation. This 

corresponds with the concept of functional responses in resource selection that 

emphasize „critical‟ habitat changes across regional gradients in availability (Mysterud 

and Ims 1998,Hebblewhite and Merrill 2008).  Topography was not a big driver of 

pronghorn habitat selection. The most significant finding of this study was that all 

marked pronghorn used a completely different winter range during 1976 than in 1977 – 

confirming that long-term studies are required to evaluate key habitats and even to 

define areas of occupancy.  

3.3.2 Shrub-Steppe 

Approximately 10 studies on pronghorn ecology and energy impacts in 

sagebrush-steppe ecosystems were reviewed from a total of 4 study areas; the 

Northern Range of Yellowstone National Park (White et al. 2007a), the Upper Green 

River Basin (Berger 2004, Berger et al. 2006, 2007,Sawyer et al. 2002, 2005b,2006), in 

the Rattlesnake hills in Wyoming (Easterly 1991), and on a reclaimed coal mine in 

northeastern Wyoming (Medcraft and Clark 1986). The series of studies by Sawyer and 

colleagues in the Upper Green River focused on both mule deer and pronghorn, and so 

are summarized below in the combined section.  

The series of studies by Berger and colleagues (Berger 2004, Berger et al. 

2006a,b, 2007), examine the response of pronghorn to energy development in the 

Upper Green river basin overlapping the study area of Sawyer et al. (2002). This area is 

underlaid by the Jonah and Pinedale Anticline natural gas formations that are estimated 

to contain >10 trillion cubic feet of natural gas and coal bed methane deposits, and is 

undergoing rapid expansion in oil and gas development.  Energy development only 
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started in 2001, so all of the studies of Berger, Sawyer and colleagues should be 

considered as assessing the early impacts of energy development.  

The studies of Berger and colleagues were initiated in fall 2002 as a pilot study 

investigating migration in pronghorn (see Berger et al. (2004, 2006) summarized below), 

the study was expanded in 2005 to a five-year study of the effects of natural gas 

development on pronghorn behavior, migration, habitat selection, and, ultimately, the 

population consequences of development. Methods involved collaring ~50 

pronghorn/year split evenly between a control (undeveloped area) and treatment 

(energy development area) area. In 2007, they increase the sample size to 100 VHF 

collars to estimate survival rates and to provide better longitudinal data on survival. 

They recovered 48 GPS collars in 2005 and 42 GPS collars in 2006, and in these 

preliminary progress reports, compare resource selection between the control and 

treatment groups. In their first (Berger et al. 2006) and second-year progress reports 

(Berger et al. 2007), the authors emphasize that results are preliminary and subject to 

change given long-term responses and final analysis. Regardless, their interim results 

can provide some important information about pronghorn responses to increasing 

development on winter ranges.  

Berger et al. (2006, a,b) report that the overriding natural factor influencing 

distribution of pronghorn on the winter range was snow depth – pronghorn selected 

60% shallower snow depths than available throughout the study area (e.g., 12cm 

versus 19cm). In terms of resource selection, while some individual animals continued 

to select habitat in the energy development areas, some animals avoided developed 

areas. At the population level, however, the authors did not find pronghorn were 

avoiding developed areas at the current levels of development. Identification of core 

areas of use by pronghorn, dictated by patterns in resource availability, may be useful 

tools to identify areas that are important to pronghorn for future energy development 

planning. From a population perspective, the authors found no differences in survival 

rates or body measurements of pronghorn between the control or treatment groups. 

While their results suggest energy development does not influence pronghorn within the 

Upper Green River Basin, the authors caution that results are preliminary, winter 

severity has been mild during the study (impacts may be greater during deeper winters 
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given pronghorn selection for shallower snow), the area of most intense development at 

present are not within prime pronghorn habitat, and responses may be expected to 

increase over longer periods of time for long-lived ungulates than the two year time-

window reported on to date. A long-term commitment to understanding the effects of 

energy development on this and other populations of ungulates is required. Regardless 

of the equivocal results of energy development on winter ranges, these studies 

documented substantial potential impacts of energy development on migration both 

within this study area, and at the regional scale. 

Berger‟s (2004) literature review on the loss of migration also mentions 

pronghorn migratory declines, especially in the GYE, where approximately 75% of all 

migrations have been lost. Berger (2004) illustrates the problem with a case study 

involving their long-term pronghorn study in the Pinedale area of WY. Both residential 

development and future potential energy development threatens one specific migratory 

corridor pinch point, the Trapper‟s Point bottleneck, where the migration corridor 

narrows to less than 800m. In a follow up study to this literature review, Berger et al. 

(2006) confirm that this particular migration corridor, from the Upper Green River 

through to Teton National Park, has likely been used for over 6000 years. Using 

archaeological data that confirms the presence of pronghorn in this migration corridor, 

Berger et al. (2006) argues that this migration route has likely persisted uninterrupted 

for at least 6000 years and likely since the end of the Pleistocene. Only by creating 

large scale migration corridors that are protected from development or managed 

specifically to mitigate energy development, will long-term migration, a critical ecological 

process that is declining across the Rocky Mountain west, persist. 

The importance of migratory corridors for pronghorn is also emphasized by a 

recent study in Yellowstone National Park by White et al. (2007). Movements of 44 

radio-collared pronghorn over 6 years revealed a similar „pinch point‟ in the migration 

corridor between summer and fall ranges which resulted from topographic constrictions, 

habitat requirements of pronghorn for open habitats, and fidelity to historic migration 

routes. Development proposed within the park for increased tourist facilities and 

buildings threatens this migration corridor. White et al. (2007) also showed that this 

population was partially migratory with approximately 70% migratory, and 30% resident. 
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Migratory pronghorn showed some fidelity to summer ranges, but 20% switched 

between years and switched strategies from year to year from migrant to resident. This 

study clearly emphasizes how little we know about migration in most populations, and 

that migration is likely a condition dependent strategy that depends on density, 

population history, climate, and, potentially, disturbance regimes. Management 

implications of this study are that it takes a long-time to document migration patterns 

and that, combined with the studies of Berger (2004) above, pronghorn seem especially 

vulnerable to development within migration corridors. 

3.3.3 Semi-desert: effects of military activities 

 The Sonoran pronghorn (Antilocapra antilocapra sonoriensis) is the most 

endangered subspecies of pronghorn, with population declines to <33 animals as 

recently as 2003 (Krausman et al. 2005). Despite being listed as an endangered 

species for over 30 years, reasons for the population declines are relatively unknown, 

but though to be linked to habitat and forage degradation, loss of water sources 

because of hydroelectric developments, and human development.  Forty percent of 

identified Sonoran pronghorn habitat occurs in military lands in southwestern Arizona, 

and a series of studies investigated the effects of military overflights and ground 

activities on pronghorn habitat use, behavior, hearing, and potential population 

consequences (Krausman et al. 2004, 2005, Landon et al. 2003). The most 

comprehensive study compared behavior of pronghorn on the military base to baseline 

behavior of animals in the closest population of pronghorn without military activity, albeit 

from a different subspecies. The study primarily relied on behavioral observations of 

pronghorn responses to human activities. Pronghorn exposed to military activity foraged 

less, stood alert and moved more than pronghorn not exposed to military activity. 

Pronghorn did not appear to respond to military overflights, and the study found that 

ungulates do not hear sounds from military aircraft as well as humans do.  

These results contrasted with the results of (Landon et al. 2003) that found 

habitat use of 31 radiocollared pronghorn tended to be in areas with lower noise levels 

from military activities, although this study apparently pseudoreplicated, confusing the # 

of locations of animals with the true sample size instead of the # of animals. Landon et 
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al. (2003) acknowledge that more detailed habitat selection studies are certainly needed 

before firm conclusions could be drawn.  Acting on these recommendations, Krausman 

et al. (2005) investigated habitat selection of Sonoran pronghorn using detailed 

behavioral observations (n=1203) of pronghorn collected over a 3 year period from 

1999-2002. Sonoran pronghorn showed stronger selection for burned sites and sites 

previously disturbed by military activity (bombing ranges, fires, etc.) over undisturbed 

sites. They speculate that increase forage production, visibility and ease of movement 

all contribute to pronghorn selection for disturbed sites, and that declines in military 

activity that simulate natural disturbance may actually be detrimental to pronghorn.  

Overall, Krausman et al. (2004, 2005) found few impacts of military activities on 

Sonoran pronghorn, but conclude that the population remains in serious danger of 

extirpation and immediate conservation actions are needed.  

 

 

3.4 Mule Deer (Odocoileus hemionus) 

 

3.4.1Sagebrush-Steppe and Grasslands 

Berger‟s (2004) literature review on the loss of migration amongst North 

American ungulates also has implications for mule deer and energy development. In the 

Greater Yellowstone ecosystem, Berger documented 75% declines in ungulate 

migration for mule deer, elk, and pronghorn due to long-term human caused habitat 

fragmentation and overhunting. Threats to remaining long-distance migration include 

energy development, tourism development, sub/urban sprawl, and highway mortality 

and habitat fragmentation. Large scale migration corridors that are protected from 
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development or managed specifically to mitigate energy development are needed to 

protect the critical ecological process of long-term migration which is declining across 

the Rocky Mountain west. 

 In a series of studies on the effects of energy development in the same Jonah-

Pinedale Anticline project area of western Wyoming, Berger and colleagues and Sawyer 

and colleagues conducted a series of related studies on the effects of energy 

development on mule deer and also pronghorn to a lesser degree (Sawyer et al. 

2005a,b, 2006, 2007).  This area is a winter range for large numbers of elk, mule deer 

and pronghorn and habitat for animals migrating from the entire Upper Green River 

Basin area, approximately 15,000km2.  Initial studies focused on migration of 

radiocollared mule deer (n=158) and pronghorn (n=32), and found seasonal migrations 

for 95% and 100% of all collared animals ranged an average of 84 and 177 km straight 

line distance between seasonal ranges. This study also noted the potential for energy 

development impacts on migration corridors, and documented the same narrow pinch 

point for the migration corridor of pronghorn migrating from the winter range to summer 

ranges in Grand Teton National Park that Berger et al. (2006, a,b) describe.  The 

authors conclude, with similar recommendations as in other migratory ranges, to 

minimize development, remove barriers to migratory movements such as fences and 

pipelines, and potentially develop seasonal restrictions to avoid the peak months of 

migratory movements in May/June and October/November. This study echoes the 

results of Berger (2004), who found that impacts on migratory ranges may affect a huge 

area surrounding the localized development, and requires a regional-scale, cumulative 

effects assessment approach. 

Focusing on winter range impacts was the focus of the studies by Sawyer et al. 

(2005b, 2006) collectively called the Sublette Mule deer study. The study was started in 

1998 to examine the ecology of mule deer home range use, habitat selection, migration 

routes and demography during a pre-development phase that ended in 2001. From 

2001-present, the study entered the second phase as a long-term study on the effects 

of energy development within the Pinedale area on mule deer ecology in an 

experimental comparison of areas with and without energy development. With the pre-

data collected in phase 1 and two treatment areas in phase 2 (with, without 
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development), this study represents a well designed before-after-control impact study, 

albeit unreplicated.  

Before development, the Sublette Mule deer population was a healthy and 

productive population, with adult female survival rates (0.85, n=14) and fawn:doe ratio‟s 

(>75:100)  indicative of a growing population (Unsworth et al. 1999).  In 2002, mule deer 

densities were similar between the control and energy development treatments, but 

have been diverging since 2002. In the developed area, mule deer densities declined 

significantly by ~47% over a 4-year period ending 2005, whereas in the control area, 

there was no negative trend and mule deer densities were constant and similar to pre-

development density on the treatment area. This trend in density is suggestive of a 

demographic impact of energy development, yet survival differences between adult 

female and overwinter fawn survival were not statistically different between the two 

areas, although overwinter fawn survival tended to be higher, the differences reported to 

date in their preliminary progress report were not statistically different. Sawyer et al. 

(2005) speculate that the lack of demographic difference between treatments may be 

because 1) small scale demographic differences could explain the differences in 

population trend, but are preliminary and influenced more by small sample size, and will 

be verified at a later date by more detailed analysis, or 2) differences were driven by 

emigration or dispersal from the developed areas. Migration routes were also identified, 

as discussed above, in this first phase.  

 From a habitat perspective, Sawyer et al. (2006) reported expanding energy 

development over a 5-year period with an increase of 95km of roads, 324 ha of well 

pads, and a total of ~400 ha of lands directly lost to development footprints within the 

study area, an increase in density of 0.12km/km2 and ~0.3 wells/km2 (considering the 

study area size just the Pinedale Anticline project area of ~800km2). Effects of energy 

development are summarized in their 2006 Journal of Wildlife Management paper 

(Sawyer et al. 2006), where they evaluated the effects of energy development on VHF 

and GPS collared mule deer collared from 1998 to 2003 over the first three years of 

development. Sample sizes of VHF and GPS collared mule deer ranged from 7-45 / 

year of the study. Mule deer avoided areas close to energy development during this 

study, responses to development occurred rapidly within 1-year of development, and 
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avoidance of energy development increased over the course of the 3–year study. 

Sawyer et al. (2006) found lower predicted probabilities of use within 2.7 to 3.7 km of an 

oil or gas well sites, confirming that indirect effects of habitat loss from energy 

development were much greater than the loss of the direct footprint of energy 

developments. Over the course of the study, areas that were classified as high quality 

habitat before development changed to low quality, and vice-versa, showing that mule 

deer shifted habitats away from favored high quality habitats because of energy 

development. Presumably, these population level habitat selection responses will 

eventually have important population implications to the total area of high quality habitat 

available in the study area. The authors recommend such demographic studies, as well 

as activities that reduce the footprint of energy development including; 1) directional 

drilling from single well pads to multiple gas sources to reduce surface impact, 2) 

limiting public access, 3) developing road networks with the goal of minimizing new road 

construction, and 4) guidelines to minimize human disturbance during the winter and on 

designated high quality ranges.  

Several reviews of the effects of energy development, with specific focus on mule 

deer or pronghorn, were also reviewed. Bromley (1985) reviewed the effects of energy 

development in wildland environments for the USFS, and provides an annotated 

bibliography similar to this review, including more broadly, the effects of all human 

activities on wildlife. Generally, she makes the following conclusions; 1) many results 

are conflicting, yet few studies have quantitatively shown the effects of human activities 

on population dynamics of wildlife, likely because long-term demographic studies have 

been extremely rare in the environment; 2) It is often difficult to separate out naturally 

induced variation in response variables from human disturbance without adequate 

baseline (pre-development) data and experimental controls; 3) severity of the impacts of 

energy development are often site-specific and will require localized mitigation 

strategies in many cases; and 4) Effects of energy development may be most critical 

during sensitive periods including winter, spring calving, migration corridors, and for 

social species (no study reviewed in this review was actually replicated).  

 In a study on the effects of human activity on mule deer in the grassland and pine 

break vegetation communities in southeastern Colorado, Stephenson et al. (1996) 
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examined home range use and fidelity in response to military activity during ground 

training exercises over a three year period. Human activity during military exercises was 

extreme; during the seven 2-3 week military exercises, between 2624-6619 humans in 

854-2397 vehicles used the 1040km2 study area.  They used a comparative design 

where home range dynamics and fidelity were compared between times with and 

without human activity for 71 radiocollared female mule deer. Mule deer female and 

fawn home ranges were larger during military activities during winter and summer. 

However, only the 50% core areas used by mule deer males were larger during military 

activities. Forty percent of female deer shifted home ranges between military activities.  

This study shows that intense human activity can have large impacts on patterns of 

space use. However, the limitations of this study are the extreme human activity levels 

observed – few energy developments even at peak construction periods, would 

approach these human disturbance levels. Secondly, while this study showed large 

changes in home range behavior, they did not investigate population impacts.  

3.4.2 Mountain 

Freddy et al. (1986) conducted some comparative trials (without controls) to 

compare the effects of human hikers and snowmobiles in Colorado from 1979 to 1980 

within a mule deer winter range.  They compared the responses of 7-11 mule deer to 

n=67 approaches to hikers and snowmobiles and documented the level of response.  

Mule deer took flight in response to snowmobiles at a greater distance, but showed a 

longer duration of response to human hikers than to snowmobiles, and showed a high 

response, running, more often to hikers than snowmobiles. Based on energetic 

calculations, each disturbance event cost between 0.2-5% of the daily metabolic 

requirements of mule deer.  When fleeing from hikers, deer moved an average of 907m, 

and consumed more energy than when responding to snowmobiles. Freddy et al. 

(1986) concluded that human activity on winter ranges should be severely restricted to 

minimize negative impacts. Limitations of this relatively well thought out study include 

psuedoreplication and small actual sample sizes. Sample sizes for tests were 

considered to be individual approach trials, whereas the true sample unit was the 

individual radiocollared deer. Therefore, a mixed-model that accounted for deer as the 
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sample unit should have been employed Gillies et al. (2006) and this may have affected 

results because of the lower effective sample size of 7 to 11 animals. 

 Evaluating the potential population responses of mule deer to energy 

development will be difficult because of broad scale declines in mule deer productivity 

across western North America (Gill 2001,Unsworth et al. 1999). Gill et al. (2001) 

reviewed the factors causing declines of mule deer populations in Colorado, and 

concluded declines could be caused by the following factors acting synergistically; 1) 

competition with increasing elk populations, 2) density dependence in vital rates caused 

by historic high population densities, 3) long-term declines in habitat quality for mule 

deer because of changes in fire history regimes in forest and shrub-steppe ecosystems, 

4) overharvest in some key areas, 5) increasing predator populations, and finally, 6) 

diseases, such as chronic wasting disease. Co-authoring the review of causes of mule 

deer declines were Dr. N.T. Hobbs, Dr. G.C White and other noted experts in mule deer 

and population biology of ungulates. Given the difficulties of disentangling all these 

potentially interacting and confounding influences on mule deer population dynamics, 

the report concludes with a series of recommended large-scale adaptive management 

experiments designed to test the main hypotheses of predation and habitat change. The 

authors emphasize that long-term (6-8 year), large–scale (WMU scale, 1000km2) will be 

required to rigorously assess reasons for mule deer declines.  The recommendations of 

this study are particularly relevant for considering the effects of energy development on 

large ungulates. To rigorously link energy development to changes in demography, 

long-term, large-scale, and well funded adaptive management experiments will be 

required. 

 From 1980 to 1981, Ihsle (1981) worked with MTFWP and the BLM to study the 

population ecology of mule deer along the east slope of the Rockies west of Choteau to 

determine the effects  of oil and gas drilling and development on mule deer. There study 

occurred early in development under extremely low densities of development – less 

than 0.003 wells/km2 had been constructed within their 2725 km2 study area at the 

beginning of the study, and their general results was almost no impacts of energy 

development on mule deer. They radiocollared 78 mule deer and considered home 

range, movement, habitat selection, migration, and fawn:doe ratio to determine the 
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effects of energy development in an observational correlation-based study design.  

They found no effects of development, generally because oil wells were restricted to a 

small part of the study, development density was very low, and the large spatial scale of 

the study area. Limitations of this study were the lack of a suitable treatment effect of 

development given the huge study area size. Perhaps focusing just on movements or 

habitat selection by mule deer in the area surrounding development would have 

provided more relevant results with respect to energy development. Regardless, while 

this study was designed as a pre-development study, to my knowledge there has not 

been any follow up, a similar theme in the review of many studies that were putatively 

pre-development. Hopefully data from this earlier study can be used in the future to 

evaluate the effects of energy development, albeit without controls. 

 Five-years later, in the same study area, Irby et al. (1988) reviewed the status of 

energy development, created guidelines for the mitigation of energy development on 

wildlife, and provided recommendations for energy development. Irby et al. (1988) 

reiterated the results of Ihsle (1981) and Irby et al. (1988) and found no detectable 

response to low density oil and gas development, but emphasized that this earlier study 

was largely conducted during the pre- or early phases of energy development. Irby et al. 

(1988) recommended that continued monitoring occur throughout the increasing 

development phase, and recommended that mitigation should occur on the scale of 

entire winter ranges prior to development occurring. Irby also reviewed the guidelines 

used by Interagency Technical Committee 1987 guidelines for wildlife that BLM used for 

mule deer, which I provide in Appendix B for an important historic perspective. 

Importantly, however, despite the existence of best practices guidelines, Irby et al. 

(1988) note that BLM often violated these guidelines, and frequently issues exceptions 

to these stipulations for exploration and well drilling operations. 

 In southeastern Idaho, Merrill et al. (1994) studied the effects of mining 

developments on migration by mule deer between seasonal ranges in the Dry Ridge 

area. Using a combination of track surveys and a small number of radiocollared mule 

deer (n=5-7), they evaluated movements of mule deer around a phosphate mine located 

in a migratory corridor. The found avoidance of mining developments during migration, 

and recommended providing adequate forest cover, travel fences to direct movements 
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away from development, and under or over-passes at specific locations to facilitate 

movements around human developments where required. They also caution that short 

term studies may fail to document effects in low snow winters, because migration was 

strongly influenced by snowfall.  

 In perhaps the first study on mitigating effects of highway caused habitat 

fragmentation on ungulates, Reed et al. (1975) studied the responses of mule deer 

approaching and attempting to cross a concrete highway underpass under I-70 in 

Colorado. The concrete underpass was not specifically designed for wildlife crossings, 

but observations suggested that it was being used by mule deer. Reed et al. (1975) 

used remote video camera‟s to record 4450 approaches by groups of mule deer that 

resulted in 1739 entrances/crossings (~40% success rate) of the structure. Sixty one 

percent of all individual mule deer that attempted to cross were successful, eventually. 

Animals that were unsuccessful at crossing were more vigilant and wary, reflecting the 

perceived risk of the crossing structure. This study laid a foundation for the development 

of the growing field of wildlife-highway mitigation (Clevenger et al. 2001,Clevenger and 

Waltho 2000). I do not review any additional studies of ungulate responses to roads, but 

summarize general results from the literature in the discussion.  

 

3.5 Combined Studies on Mule Deer and Pronghorn 

 

3.5.1 Sagebrush-Steppe 

 From 1988-91, Easterly (1991) conducted a study to examine the effects of 

energy development on both pronghorn and mule deer in the Rattlesnake hills of 

Wyoming, an area of sagebrush-steppe vegetation communities. Their study was in 

response to repeated violation by the BLM of the 1985 environmental impact statement 
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(EIS) on the Platte River Resource Area (which included the Rattlesnake hills) of their 

own policies regarding timing restrictions of energy development on crucial winter range 

for ungulates. Their policy, stated in the EIS, was that “no surface development will be 

allowed from Nov 15 through April 30 in critical pronghorn or mule deer winter range 

(BLM, 1985: 29). Despite this policy, BLM issued 18 permits in violation of this policy for 

drilling operations in crucial winter range between 1987 and 1991. Easterly et al. (1991) 

focused on testing whether violation of this policy was negatively affecting ungulates, 

but collected no pre-development data nor had any controls or comparison sites.  

Easterly et al. (1991) captured pronghorn and mule deer; they deployed 20 VHF collars, 

175 neckbands, and ear tagged 28 males on pronghorn, and collared 29 mule deer all 

with VHF collars. They used a combination of radiotelemetry, and aerial and ground 

surveys to measure home range responses, densities, movements, and survival as a 

function of human development. Pronghorn densities were substantially lower closer to 

energy development and collared pronghorn avoided well sites during disturbance. 

Results for mule deer were more equivocal; densities of mule deer were similar close to 

and far from drilling activities, but mule deer were located farther from development 

during drilling, but not after, when they were the same distance as before development. 

This indicates some habituation response of mule deer to development. The authors 

attempted to draw some population consequences from their study, but were unable to. 

The prime limitation of this relatively well designed study was the lack of pre-

development data on mule deer and pronghorn distribution in the region.  

Medcraft and Clark (1986) studied the effects of reclamation of a 200ha coal 

mine on seasonal habitat use and diets over a 1 year period in northeastern Wyoming. 

The coal mine was reclaimed by a mix of native and non-native graminoids, forbs, and 

shrubs – only native shrubs were planted. Mule deer showed statistically significant 

selection for reclaimed lands more than expected based on availability, but pronghorn 

strongly avoided reclaimed lands.  This difference was thought to be because mule deer 

selected non-native plants during summer (e.g., alfalfa), whereas pronghorn preferred 

native forbs which occurred at lower frequencies on reclaimed lands. Through 

behavioral observation, the authors also concluded that remaining mining structures 

such as fences and berms did not impede mule deer or pronghorn movements. The 
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authors conclude by recommending reclamation of all disturbed sites with native 

species including graminoids, forbs and shrub species. To encourage shrub 

revegetation following development, Medcraft and Clark (1986) recommend 

concentrating shrub establishment efforts by patch seeding sites that are ecologically 

suitable such as draws, coulees, etc. Furthermore, cattle grazing of reclaimed lands 

should be minimized to allow re-vegetation and use by native ungulates. 
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Table 3. Review of scientific literature on the effects of energy development on Mule deer and Pronghorn, summarizing study 
authors, location, vegetation type, species (Aa- Antilocapra sp., Aas – A. A. sonoranensis, AlAl – Alces alces, Ce- Cervus elaphus, Oh- 
O. hemionus, Oc- Ovis canadensis), whether the study was peer reviewed or not, study area size, duration, development type, 
study design and sample size, general results and management recommendations. 

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Armstrup 1978    
MT-WY, 
grassland, 
sagebrush 
steppe 

Aa No 1036 km
2
 

and 
2years 

pre-
develop
ment 

Pre-
developme
nt study, 
n=27 Ce; 
75 Aa 

General ecology study. Select sagebrush 
vegetation types in winter, fed for longer 
periods of time in winter, largely diurnal 
activity patterns, movements peaked 
during spring and fall, naturally shift 
between home ranges from year to year.  
 

Sagebrush key for winter forage for 
pronghorn. Variation in winter range 
use makes long-term studies to 
identify critical habitat key. 

Berger, 2004. 
Review 

Aa, 
Oh, 
Ce 

Yes Review Human 
habitat 
fragment
ation, oil 
and gas. 

Literature 
review of 
radio-
telemetry 
studies 

75% of the historic migration routes for elk, 
mule deer, and pronghorn in the Greater 
Yellowstone ecosystem have been lost due 
to human caused habitat fragmentation. 
Local risks to the trapper point migration 
corridor in the Upper Green River basin. 
 

Creation of network of long-distance 
migration corridors required to 
conserve existing long distance 
migrations. Impacts greatest during 
spring and fall migrations. 

Berger et al. 
2005, 2006a, 
WY, sagebrush 
steppe 

Aa No 4000 km
2
 

and 
2years 

 Comparati
ve, 
radiotelem
etry, n>50 
 

First and second year progress reports on 
the effects of gas development on 
pronghorn in a control and treatment area 
in the Upper Green River basin.  

Authors did not find pronghorn were 
avoiding developed areas at the 
current levels of development, but 
cautioned results are preliminary and 
ongoing and results of development 
should not be expected to occur 
instantly. 
 

Berger et al. 
2006b 

Aa Yes ~15,000 
and 
2years 

 Observatio
nal, 
archaeolog
y, radio-
telemetry, 
n=10  

Compared migration routes identified with 
telemetry to archeological sites 6,000BP. 
Migration route has remained the same for 
at least 6000 years. Migration corridor has 
extremely narrow restrictions. 

To protect critical migration routes, 
energy development needs to be 
restricted or removed to maintain 
long-term ecological processes. 
Migration seasons impacted most. 
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Table 3.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Bromley 1985    
Review   

Aa, 
Oh, 
Ce 

No  N/A Gas, oil, 
seismic 
explorati
on 

Review, 
n=N/A 

Ungulates avoid areas during construction 
phases, road building, drilling, seismic. 
Responses to established oil field difficult 
to determine because of few long-term 
studies with adequate temporal and spatial 
controls.  

Timing and location restrictions 
required to avoid conflicts with 
ungulates, but this requires detailed 
knowledge of ungulate ecology. 
Called for large scale, long-term 
studies. 
 

Bruns  1977    
Alberta, 
grasslands 

Aa Yes 2500 km
2
 

and 
0.3years 

Roads Observatio
nal, n=N/A 

Avoidance of fences and highway; graded 
roads appeared to be selected by 
pronghorn, especially in deep snow 
winters. 

Barbless fences not higher than 46 
cm; farmers leave gates open (when 
unoccupied); improvement of winter 
microhabitat. Winter impacts 
greatest. 
 

Easterly 1991    
WY, 
shrubsteppe, 
grasslands 

Aa, 
Oh 

No 632  km
2
 

and 
4years 

Oil Observatio
nal,  
n=20 Aa, 
29 Oh 

Densities within oil fields were consistently 
lower than outside.  The 2 most heavily 
used oil fields were used less than 
expected, but others were used in 
proportion to their availability.  
 

Recommend drilling on crucial winter 
range during summer months only 
when area is less critical to ungulates. 

Freddy et al. 
1986, CO, 
mountain 

Oh Yes 3 km
2
, 2 

years 
Human 
disturba
nce 

Comparati
ve, radio-
telemetry, 
n=7 

Compared flight responses of mule deer to 
snowmobiles and hikers.  Mule deer 
responded more to hikers than to 
snowmobiles.  
 

Human activity restrictions required 
on winter ranges, winter greatest 
impact. 

Gill et al. 2001    
CO, Review 

Oh No  N/A oil and 
gas, 
seismic 

Review Evaluated different hypotheses for mule 
deer declines in Colorado, with relevance 
to Montana. Causes for declines could be 
long-term habitat changes, competition 
with expanding elk populations, harvest, 
density dependence, disease. 

Large-scale replicated management 
experiments are required to 
disentangle complex interactions to 
understand ungulate ecology. 
Recommended study designs are 
presented that are very relevant to 
energy development in Montana. 
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Table 3.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Girard et al. 
1985    ND, 
grassland 

Oh, 
Ov, 
Ce 

No 4068  
km

2
  and 

years 

various 
oil/gas 
develop
ment 

Review Early-development literature review. 1% of 
landbase in ND study area impacted 
directly by energy development, unknown 
how much area lost indirectly. 

Avoid wooded areas; reclamation; 
mitigation required. Emphasized 
importance of understanding effects 
of environmental toxins on wildlife. 
 

Hayden-Wing 
Associates 
1991    Review   

Aa, 
Oh, 
Ce 

No N/A Gas, oil, 
seismic 
explorati
on 
 

Review, 
n=N/A 

Ungulates respond the most during the 
construction phase, but are also displaced 
by human activities in the longterm, 
especially during winter and spring. 

Recommend restriction of exploration 
on occupied winter range from Nov 
15 to April 30 as a precautionary 
principle 

Hiatt et al. 
1982    WY, 
Mountain 

Ce, 
Oh 

No 101  km
2
  

and 0.25 
years 

Oil well Comparati
ve, n= 

Both elk and mule deer shifted their ranges 
away from the well site.  There was no 
evidence of avoidance of the access road 
by either species.   
 

Minimal 

Ihsle et al. 
1981    MT, 
grasslands, 
pine breaks 
 

Oh No 2725  
km

2
 and 

1.4 years 

oil and 
gas, 
seismic 

Observatio
nal, n=78 

Impacts of gas and oil development difficult 
to assess because this was largely a pre-
development study that has not been 
followed up.  

None 

Irby et al. 1988    
MT, Review 

Oh No 2725  
km

2
  and 

years 

  No detectable response to low density oil 
and gas development, study largely 
conducted during the pre- or early phases 
of energy development. 

Mitigation should occur on the scale 
of entire winter ranges prior to 
development occurring. Review the 
Interagency Technical Committee 
1987 guidelines for wildlife (see 
Appendix B of this review). 
 

Krausman, et 
al. 2004    AZ, 
Semi desert 

Aa, 
Oh 

Yes km
2
  and 

2.25year
s 

Military 
Operatio
ns 

Experimen
tal, n=4 

No detectable difference between 
exposed/unexposed animals to either 
ambient or anthropogenic noise; no 
detectable difference in 
exposed/unexposed hearing thresholds 

Reduce ground stimuli could help, but 
overall, drastic recovery measures 
beyond curtailing military activity are 
needed. 
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Table 3.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Krausman, et 
al. 2004    AZ, 
Semi desert 

Aas Yes 377  km
2
 

and 
3years 

Military 
Operatio
ns 

Observatio
nal, n=UNK 

Habitat use proportional to availability, but 
appeared to favor habitats previously 
disturbed by military activities. 
 

Continued monitoring required, ; 
multi-species responses; coordinated 
military/wildife use required, may 
benefit from fires from military use. 
 

Landon et al. 
2003    AZ, 
Semi desert 
 

Aas No   km
2
  

and 
4years 

Military 
Operatio
ns 

Observatio
nal, n=31 

Radiocollared pronghorn avoided high 
noise areas.  

Potentially reduce overflights, study 
human disturbance in more detail.  

Medcraft et 
al., 1986, WY, 
shrub steppe 

Oh Yes 200ha, 1 
year 

Mining Observatio
nal, diet 
studies, 
N=? 

Mining site reclaimed with a mix of native 
and non-native plants. Deer selected 
reclaimed mining lands more than unmined 
lands, preferring non-native plants during 
summer. 

Reclaim all mining sites including 
graminoids and shrub species.  Need 
to ensure cattle cannot access 
reclaimed lands or benefits lost. Focus 
on native species recommended. 
 

Merrill et al. 
1984, ID, 
Mountain 

Oh Yes Unk, 5 
years 

Mining Observatio
nal, tracks, 
telemetry, 
n = 5 
 

Mining operations curtailed migratory 
movements of mule deer. 

Travel corridors with sufficient cover 
should be considered to mitigate 
disturbance caused by mines. 

Reed et al. 
1975. CO, 
Mountain 

Oh Yes Unk, 1 
year 

Roads Observatio
nal, video 
N=4450 

Videotaped mule deer responses to a 
concrete box underpass under I-70 in 
Colorado. Mule deer crossed underpass 
40% of time at each attempt, 60% overall. 

Underpasses can be useful to mitigate 
negative effects of habitat 
fragmentation and mortality caused 
by roads – first study of its kind. 
 

Rost et el 1979    
MT, pine 
breaks 

Oh, 
Ce 

Yes km
2
   and 

2 years 
roads Observatio

nal, n=N/A 
Deer and elk avoided roads, particularly 
areas within 200m of a road (based on 
abundance and density of fecal pellets). 
 

Range improvement projects would 
benefit deer and elk more if they 
were located away from roads. 
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Table 3.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Sawyer et al. 
2002    WY, 
shrubsteppe,  
grassland 

Aa, 
Oh 

Yes 798  km
2
 

and 
4years 

pre-
develop
ment 

Pre-
developme
nt, n=171 
Oh; 35 Aa 

Mule deer populations traveled 64-161 km 
yearly; pronghorn traveled 161-241 km. 

Energy development has the potential 
to impact travel corridors for 
pronghorn and mule deer. 

Sawyer et al. 
2004    WY, 
sagebrush, 
grasslands 
 

Oh Yes 798,  3 
years 

Gas, 
seismic 

Review, 
n=N/A 

Review of the potential effects of oil and 
natural gas development on Pronghorn in 
Wyoming. 

Recommends approach to determine 
the effects of energy development on 
wildlife that emphasizes long-term, 
well thought out management 
experiments between control and 
treatment areas. 
 

Sawyer et al. 
2005    WY, 
sagebrush, 
grasslands 

Oh No ~800  
km

2
 and 

4 years 

natural 
gas 
develop
ment 

BACI, n=69 Mule deer in the treatment area decreased 
46% in 4 years under high densities of 
roads and well sites (see Table 5 below). 

Higher densities of wellpads will 
negate the potential effectiveness of 
timing restrictions on drilling 
activities. 
 

Sawyer et al. 
2005    WY, 
sagebrush, 
grasslands 

Oh, 
Aa 

Yes 15,000  
km

2
 and 

3 years 

roads, 
housing 
develop
ments, 
mineral 
explorati
on 

Observatio
nal, n=171 
Oh; 34 Aa 

Mule deer and pronghorn migrated 20-158 
km and 116-258 km respectively, between 
seasonal ranges. A number of significant 
bottlenecks were observed on migration 
routes.  

Migration routes are important 
components of mule deer and 
pronghorn ranges. Fences, road 
networks, and increased human 
disturbance associated with energy 
and housing developments influences 
the effectiveness of mule deer and 
pronghorn migration routes. 
 

Sawyer et al. 
2006    WY, 
sagebrush, 
grasslands 

Oh Yes ~800  
km

2
 and 

6 years 

natural 
gas 
develop
ment 

Comparati
ve, n=77 

Mule deer avoided areas in close proximity 
to well pads. Changes were immediate (i.e., 
year 1 of development), and no evidence of 
well-pad acclimation. Lower predicted 
probabilities of use within 2.7 to 3.7 km of 
well pads. 
 

Higher densities of wellpads will 
negate the potential effectiveness of 
timing restrictions on drilling 
activities. 
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Table 3.        

Authors, 
location, Veg. 
type 

Spp. Peer 
Review
? 

Study 
Area 
Size, 
Duration 

Develop
ment 
Type 

Study 
design & 
size 

General Results Management Recommendations 

Stephenson et 
al. 1996    CO, 
grasslands, 
pine breaks 

Oh Yes 1040  
km

2
 and 

3 years 

Military 
Operatio
ns 

Comparati
ve, n=71 

Mule deer in areas with active military 
operations (or previous activity) 
consistently had larger home ranges than 
those in areas with no activity.  40% of does 
shifted their home ranges and after military 
operations started in an area.  

 

White et al. 
2007. MT/WY, 
mountain, 
sagebrush-
steppe 
ecosystem 

Aa Yes ~750 
km

2
, 6 

years 

Tourism 
develop
ment 

Observatio
nal, 
radiotelem
etry, n=44 

Yellowstone pronghorn were partially 
migratory, with 70% migrating 15-50km 
away to 4 different summer ranges from 
the same winter range. Individuals showed 
high fidelity to summer ranges, but 20% 
adopted a variable migration strategy from 
year to year.  Migration though to be 
condition dependent, influenced by 
weather, climate and density.  Migration 
corridor has extremely narrow restrictions. 
 

Protection of critical migration 
corridors for pronghorn especially 
important because of threats to 
migration corridors in the study area 
and considering large scale loss of 
migration in the Greater Yellowstone 
ecosystem. 
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3.6 Bighorn Sheep (Ovis canadensis)  

 
No published studies were found on the 

effects of energy development on bighorn 

sheep. Most resource conflicts between 

development and bighorn sheep appear to 

be cause by mining, not energy 

development per se. A number of studies 

have been conducted on the effects of 

human development and recreation. Therefore, I focus on reviewing the effects of 

mining and energy development in general on bighorn sheep.  

In general, bighorn sheep avoided habitats disturbed by human activities (hiking, 

etc) in Arizona (Etchberger et al. 1989), roads and highway traffic in Rocky Mountain 

National Park (Keller and Bender 2007), construction activities in Nevada (Leslie and 

Douglas 1980), human activities including vehicles, mountain bikers and hikers in 

Canyonlands National Park (Papouchis et al. 2001) and to human hikers or humans 

with dogs in Alberta (MacArthur et al. 1982).  Sheep in Canyonlands avoided areas 

within ~500m of human development, a loss of access to 15% of high quality habitat.  

Dall sheep (Ovis dalli nelsonii) also showed responses to human activities, especially 

females, who rested less and foraged more when disturbed by humans. One of the 

most common forms of human disturbance investigated was the effects of aircraft 

overflights (helicopter, fixed-wing) on bighorn sheep. Studies on the effects of aircraft on 

bighorn and Dall sheep (Bleich 1990, Stockwell 1991, Frid 2003) as well as Mountain 

Goats (Oreamnos oreamnos) consistently show an impact on bighorn sheep at 

distances from 250-750 meters straightline distance (above ground level) for sheep, and 

even greater distances for mountain goats (Cote 1996), who responded to aerial 

disturbance at distances of up to 2000m. Based on these studies, clear 

recommendations to avoid overflights on mountain sheep and goat habitat were 

presented by all authors. 

In terms of bighorn sheep response to mining development, results were 

equivocal. Jansen et al. (2006, 2007) showed behavioral differences in and out of a 
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copper mine in Arizona, where sheep fed less and bedded more within the mine site, 

controlling for the effects of age-class. However, despite these minor differences, 

Jansen et al. (2006, 2007) concluded that bighorn sheep may readily habituate to 

mining activity, and that reclamation was needed following mining activities.  In contrast,  

Oehler et al. (2007) found that at a mine in the semi-desert mountains of California, 

Desert bighorn were negatively impacted by mining activities, suffering reduced forage 

quality, increased signs of disturbance during summer, and potentially important 

population effects. They concluded that where water was limiting for desert bighorns, 

mines should avoid areas near permanent water sources for bighorn sheep.  In Alberta, 

a large open-pit mine was reclaimed following coal extraction using planting of native 

plants combined with extensive post-mining soil grading, seeding, and fertilization 

(MacCallum and Geist 1992). Sites were successfully reclaimed with native legume 

species (e.g., Astragalus spp. Smyth 1997), and forage biomass increased for sheep 

dramatically from 1700kg/ha on native grasslands to 4100kg/ha on reclaimed lands. 

bighorn sheep apparently responded at the population level, with higher local densities, 

increased horn growth, and lower lungworm counts. Therefore, sheep seem able to 

respond to reclamation very well.  
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3.7 Moose   

There have been few studies of the impacts of energy 

development or human activity on moose in the regions 

considered as part of this literature review. In a classic 

study of the effects of human disturbance on moose, 

Altmann (1958) studied the effects of moose sex, age, 

reproductive status and season on the flight response 

of moose to human observers. Flight response 

measures the perceived risk of ungulates to 

disturbance; as flight response increases, i.e., ungulate 

flee an approaching human at a greater distance, the 

perceived risk imposed by the disturbance are thought to also increase. Altmann (1956) 

found that female moose with calves at heel fled human disturbance at a farther 

distance than other age-classes, and that moose fled sooner during the hunting season 

because of increased risk of human caused mortality during this period. Flight 

responses varied seasonally, declining the most during the rut, and for moose females 

with <1 month old neonate calves at birthing sites. This study laid the foundation for 

research investigating flight response of ungulates, and provides an important 

foundation for understanding the potential population implications of development. 

  In the Kakwa River valley of Alberta‟s forested foothills Horesji (1979) conducted 

a brief observational study using snow track surveys of ungulate crossings of a seismic 

line before, during, and after the construction phase in winter. Four species, in order of 

track abundance, were recorded; Moose, Elk, Mule Deer and Woodland Caribou. 

Despite very small sample sizes for all species (n=26 total track crossings), Horesji 

(1979) concluded that Moose avoided the seismic line only during construction, use 

before and after did not appear affected, though inferences are weak at best because of 

the limited duration, scope, and sample size. Conclusions about other species could not 

be drawn because of low numbers of samples. 

In the only other study of human activities on moose I review, Berger (2007) 

showed that the responses of moose to human activity were complex and mediated by 
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predation risk by grizzly bears in Grand Teton National Park, WY. Over a nine-year 

study, Berger (2007) documented selection by moose for distance to roads within the 

park, and showed that as the density of grizzly bears increased over this 9 year study, 

moose increased their selection for areas for calving close to roads within the study 

area. Because grizzly bears are an important predator of neonatal moose calves, and 

because grizzly bears avoided human activity, Berger (2007) argues that moose were 

selecting areas near human activity because grizzly bears avoided human activity. 

Thus, human caused refugia in predation risk by a natural predator emerged as an 

indirect effect of human activity on roads in this National Park ecosystem. This 

phenomenon, whereby human activity repels carnivores such as wolves and grizzly 

bears, thereby providing are refuge for ungulate prey, has been documented in other 

systems in North America. In Banff National Park, wolf avoidance of human activity 

created a refuge for elk, which benefited from increased adult and calf survival in areas 

where wolves avoided people. This refuge effect lead to a trophic cascade on 

vegetation, beavers, and other competitors with elk inside the refuge (Hebblewhite et al. 

2005).  

These studies emphasize the important consequences of human development 

on ungulates will often be mediated through the indirect effects of changes of the 

distribution of predators in response to roads and human activity.  In Montana, where 

natural predators such as coyotes, wolves, and mountain lions coexist with ungulate 

species, the responses of ungulates to energy development will often be mediated by 

human-induced changes to carnivore distribution and habitat use. 



Literature Review on the Effects of Energy Development on Ungulates Hebblewhite 

 

Page 69 

3.8 Woodland Caribou (Rangifer tarandus tarandus) 

 

In this review I focus my efforts on studies on the effects of energy development on 

Boreal woodland caribou (Rangifer tarandus tarandus). I exclude, in the large, effects of 

energy development on Barrenground caribou (Rangifer tarandus grantii), focusing here 

mainly on the effects of development on Alberta woodland caribou populations. Energy 

impacts on migratory arctic caribou have been summarized by numerous authors, and 

focus on the effects of development of the Alaska north slope oil reserves (National 

Research Council 2003,Cronin et al. 2000,Cronin et al. 1998), although more recent 

efforts focus on impacts in the Canadian Arctic (Johnson et al. 2005). While I do not 

review them in detail in the text, I summarize Arctic caribou herd studies in Table 4. 

 Research on the effects of energy development on woodland caribou has 

progressed largely in these three phases; 1) studies on the effects of construction or 

seismic activities during exploration, 2) studies on altered ecosystem dynamics that 

influence caribou population viability, and 3) regional, cumulative effects assessment 

approaches that address caribou population viability at large regional scales. In the 

discussion I draw parallels between caribou research in Alberta and ungulate-energy 

impacts in the lower-48 states, where research is largely being conducted at the first or 

second step.  

 Studies that examined the impacts of well-site development or seismic 

exploration confirmed the negative impacts of these phases of energy development on 

caribou. Initial development restrictions in Alberta were similar to those put in place in 

the 1970‟s and 1980‟s in Montana for wildlife (e.g., Appendix B) – namely that it was the 

disturbance during development which posed the most significant impact on caribou. 

This formed the basis for early regulations designed to minimize the timing of 
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development overlap with key „calving seasons‟ and late winter seasons.  In effect, this 

policy is a formulation of the hypothesis that the main impacts of development are 

behavioral only, and that through avoidance of key behavioral periods, development 

impacts can be minimized.  This policy was tested in a series of experimental and 

modeling studies. Bradshaw et al. (1997, 1998) showed the negative impacts of 

disturbance caused by seismic exploration explosions increased caribou movement 

rates, habitat shifts, and reduced feeding times. These behavioral changes resulted in 

potential loss of body mass and reduced reproduction, linking avoidance to population 

declines. Yet the magnitude of observed impacts in these simulation studies was less 

than the rate of declines of some caribou herds, suggesting the next round of studies 

that investigated dynamics at the level of the individual caribou herd. 

 A series of studies across the boreal forest now confirm that amongst the main 

reason caribou populations are declining through large-scale changes to predator-prey  

dynamics as a result of forestry and oil and gas development (Alberta woodland caribou 

recovery team2005, COSEWIC2002). Historically, caribou coexisted at large spatial 

scales with moose and wolves by adopting a spatial separation strategy whereby they 

selected large contiguous patches of habitats unsuitable for wolves and their primary 

prey, such as peatland bogs or large patches of old growth conifers (James et al. 2004). 

Increased forestry produces early-seral stands with abundant food for primary prey, 

moose, which increase in population density with increasing forestry. This in turn 

increases wolf population densities (Fuller et al. 2003), which, when they exceed a 

density of approximately 7 wolves/1000km2 exert enough secondary predation influence 

on caribou to reduce survival rates and drive population declines (Stuart-Smith et al. 

1997, McLoughlin et al. 2003, Alberta woodland caribou recovery team 2005, James 

and Stuart-Smith 2000). Oil and gas development exacerbates changes from forestry by 

providing high densities of oil and gas seismic exploration lines upon which wolves have 

been shown to have the following negative ecological impacts. Wolves travel at higher 

speeds on seismic lines (James et al. 2004), which increases kill rates on large 

ungulate prey species (Mckenzie 2006, Webb et al. In Press), and increases overlap of 

wolves and caribou (Neufeld 2006). As a result, caribou show strong avoidance of 

human development near roads and seismic lines, as well as well sites (Dyer et al. 
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2001, 2002). Dyer et al. (2001) documented maximum caribou avoidance of areas 

250m from roads and seismic lines and 1000m from wells, which, when extrapolated to 

the entire study area, impacted from 22-48% of available caribou habitats with potential 

road avoidance effects. Dyer et al.‟s (2000) results presented the first clues that human 

development impacts were operating cumulatively and at large spatial scales.  

 During the next phase, scientists began studying population dynamics of 

impacted caribou herds across Alberta, confirming that the majority were declining 

(Mcloughlin et al. 2003, Alberta woodland caribou recovery team 2005) due to the 

mechanisms described above (Mcloughlin et al. 2005). Both empirical (McLoughlin et al. 

2005) and modeling research at this stage confirmed the grim predictions of the 

cumulative effects of landscape change on caribou (Lessard et al. 2005,Weclaw and 

Hudson 2004, Sorenson et al. 2008) – aggressive and dramatic changes to the status 

quo energy development policy and/or aggressive interim measures such as landscape 

restoration, core protected areas, and large-scale energy development restrictions may 

be necessary to recover this federally threatened species (Alberta woodland caribou 

recovery team 2005). Unfortunately, efforts to restore seismic lines using experimental 

line blocking experiments failed to achieve any measureable reduction in travel by 

wolves, and Neufeld (2006) concluded that seismic line restoration at the scale 

necessary to reduce predation risk on caribou was unfeasible.  

 Finally, cumulative effects assessment at large scales confirms the grim picture 

facing caribou conservation in the face of energy development in Alberta. Using data 

from the previously mentioned studies, Schneider et al. (2003) developed cumulative 

effects assessment scenario‟s for caribou herds in Alberta, and showed that even under 

optimistic scenario‟s in development rates, which that have been exceeded within the 5 

years since Schneider et al. (2003), available caribou habitat would decline from 42% of 

the study area (59,000km2) at present to around 6% within 100 years. Empirical 

cumulative effects models also confirm the dire straits caribou face. By comparing 

population growth rates of caribou populations against the total amount of industrial 

development within caribou ranges and the total amount of caribou ranges burned by 

fire, a management model was developed that predicted expected caribou population 

growth rate simply as a function of % industrial development and % area burned 
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(Sorenson et al. 2008, Fig. 10). Therefore, from a simple management perspective, 

the key variables after decades of research boiled down to the amount of habitat 

lost, which disproves the policy hypothesis that energy development can be 

mitigated with timing or seasonal restrictions, and also refutes the hypothesis 

that incremental continued energy development is consistent with caribou 

persistence. 

 Today, caribou are listed as a threatened species both federally and provincially, 

with over 60% of identified herds in Canada declining because of some form of 

industrial human development (Alberta woodland caribou recovery team 2005). Drastic 

recovery actions are being proposed, and the federal government is presently 

developing critical habitat designation that will undoubtedly result in recommendations 

for restrictions on the amount of industrial development allowed within caribou ranges 

(Alberta woodland caribou recovery team 2005). In summary, these studies emphasize 

several key points; 1) short-term disturbances from energy development are not 

necessarily the most significant population level impacts; 2) by the time population-level 

impacts were detected, it was almost too late to recover many populations, or the level 

of restoration activities required are not feasible; 3) it is the amount of habitat disturbed 

by humans, not habitat fragmentation effects per se, that drove caribou population 

declines, 4) the sample size is effectively the population of caribou both for statistical, 

biological, and planning reasons, 5) cumulative impacts were not always evident from 

individual studies, and required scaling up to regional scales. 

 

 

 

 

 

 

 

 

 

Fig. 10.  Meta-analysis model for 
woodland caribou population growth rate 
as a function of the % of the boreal 
caribou range that was burned and the % 
of the caribou range converted to non-
habitat through industrial development. 
The regression model was developed 
using n=6 woodland caribou population 
ranges across a 20,000km2 area in 

Northern Alberta, and is described by λ= 
1.191 - (0.314 * IND) - (0.291 *BURN) 
(R2 = 0.96, n = 6, P = 0.008) 
[Sorenson et al. 2008]. 
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Table 4. Review of scientific literature on the effects of energy development on Moose, Bighorn Sheep, and Caribou, 
summarizing study authors, location, vegetation type, species (AlAl – Alces alces (Moose), Oc- Ovis canadensis, Rtc – Rangifer 
tarandus caribou (Newfoundland subspecies), Rtg – Rangifer tarandus grantii (Barrenground caribou), and Rtt- Rangifer 
tarandus taranuds (Woodland caribou), whether the study was peer reviewed or not, study area size, duration, development 
type, study design and sample size, general results and management recommendations. 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Moose         
Altmann 1958    
WY, various 

AlAl Yes Unk,  
3years 

Human 
recreation
/ hunting 

Observation
al 

Hunting pressure increased flight 
response, and cows with calves were 
easily disturbed. Flight distance declines 
during rut, and with newborn calves. 
Both sexes became habituated to some 
degree to human disturbance.  
 

Effects of human disturbance on 
moose could be great enough to 
affect population dynamics. 

Berger 2007, 
WY Mountains 

AlAl Yes ~500km
2
,  

9 years 
Human 
activities 

Comparative 
radioteleme
try, n= 192 
 

Evaluated effects of predation by grizzly 
bears on selection by moose for roads. 
Moose selected to be closer to human 
activity as grizzly bear predation 
increased. Grizzly bears avoided human 
activity, providing a human-caused 
refugia from predation. 
 

Effects of human activities on 
wildlife can be counter-intuitive in 
the presence of human-caused 
refugia from predation.  
Considering indirect effects of 
trophic interactions to gauge 
development impacts key. 

Horesji  1981    
Alberta, 
foothills 

AlAl, 
Oh, 
Rtt, 
Ce 
 

No  and 
0.15years 

Seismic 
exploratio
n 

Comparative 
(BDA), n=26 

 Moose only species with enough 
data, crossed less during than 
before/after exploration 
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Table 4. Bighorn Sheep 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Bighorn Sheep        

Etchberger et 
al. 2007, AZ, 
semi desert 

Oc Yes 250km
2
, 2 

years 
Human 
disturbanc
e 

Observation
al 

Compared landscape covariates between 
areas currently occupied by bighorn 
sheep in the Coronado forest vs. areas 
unoccupied. Habitats used by bighorn 
sheep have less human disturbance, and 
higher forage biomass. 
 

Fire is important and restoration of 
fire could enhance sheep habitat. 
Reducing human activity in the 
abandoned areas could enhance 
restoration of this population. 

Frid (2003) Oc Yes Unk, 1 
year 

Helicopter  
& aircraft 
disturbanc
e 

Experimenta
l, n=56 
experimenta
l overflights 

Aircraft approaches that were more 
direct (relative to the sheep) were more 
likely to cause sheep to flee or disrupt 
resting, and latency to respond was 
longer. Sheep had a 10% chance of 
fleeing when aircraft were as close as 
750m, and a 10% chance of disrupting 
rest as far as 1.5km away. 
 

Recommend avoiding known sheep 
ranges by as much as 1.5 km based 
on disturbance to resting behavior 
instead of fleeing behavior – the 
most costly response. 

Jansen et al. 
(2006, 2007), 
AZ, semi-
desert 

Oc Yes Unk, 2 
years 

Mining 
disturbanc
e 

Observation
al, 
radioteleme
try, n=12 

Minor differences in sheep behavior 
inside and outside the mining area; 
Sheep spent more time feeding and less 
bedding inside the mine. 

Sheep appeared to habituate to 
mining activity rapidly. Emphasis 
placed on restoration, especially in 
desert or semi-desert 
environments. 
 

Keller & 
Bender (2007), 
CO, mountain 

Oc Yes ~500km
2
, 

2 years 
Human 
recreation
al 
disturbanc
e, roads 

Observation
al, 
behavioral 
observation 

The number of sheep groups visiting a 
key mineral lick adjacent to a road 
declined as human disturbance 
increased, and the time and number of 
attempts required by bighorn to reach 
Sheep Lakes was positively related to the 
number of vehicles and people present 
at Sheep Lakes. 
 

Negative effects of road and human 
avoidance may affect population 
dynamics. Recommended seasonal 
human use restrictions to maintain 
sheep populations.. 
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Table 4. Bighorn Sheep 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Leslie & 
Douglas 
(1980), NV, 
semi-desert 

Oc Yes Unk, 1 
year 

Human 
disturbanc
e, 
Constructi
on 

Observation
al, 
telemetry, 
n=17 

Construction caused a significant shift in 
use of artificial water sources by 9 of 17 
female marked sheep.  Productivity 
during construction did not depart from 
the long-term population mean; 
however, lamb survival may have been 
affected. 
 

Particular care should be given to 
water sources for bighorn sheep 
during development, habituation 
may ameliorate long-term negative 
effects to some degree, but 
population declines could occur.   

Loehr et al. 
(2005), YT, 
Subarctic 
mountains 

Oc 
dalli 

Yes Unk, 1 
year 

Human 
disturbanc
e by 
hikers 

Observation
al, n =35 

Females rested less and foraged more 
under human disturbance and were 
more vigilant, but not males.  

None. 

MacArthur & 
Geist (1982), 
AB, Mountain 

Oc Yes Unk, 2 
years 

Human 
disturbanc
e, hikers 
and dogs 

Observation
al, heart 
rate 
monitors, 
n=5 

Cardiac and behavioral responses were 
greatest to humans and humans with 
dogs or approached sheep from over a 
ridge. Reactions to road traffic were 
minimal, and no reactions to helicopters 
or fixed-wing aircraft were observed at 
distances exceeding 400 m from sheep. 
 

Responses to disturbance were 
detected using HR telemetry that 
were not evident from behavioral 
cues alone. 

MacCallum & 
Geist (1992), 
AB, Mountain 
 

Oc Yes Unk, 1 
year 

Mining 
disturbanc
e & 
restoratio
n 

Observation
al 

Sheep seasonal movements were similar 
to those found on native ranges. They 
used the reclaimed areas as winter range 
and for the mineral licks exposed during 
mining. Two thirds of all sightings were 
confined to 1.3 km of reclaimed 
grassland; its average productivity (4190 
kg/ha) exceeded native ranges (1700 
kg/ha).  Infestation with lungworms was 
moderate. Lamb production and survival 
were high. 
 
 

Design criteria should be: feeding 
areas should be dry and lie within 
300 m of escape terrain, which 
should have a slope of 40% and 
contain at least three benches. Rock 
piles should be placed on grazing 
areas. Mineral licks, a vital welfare 
factor, already existed within the 
high walls created by strip mining. 
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Table 4. Bighorn Sheep     

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size 

General Results Management Recommendations 

Oehler et al. 
(2005), CA, 
semi-desert, 
mountain 

Oc No Unk, 3 
years 

Mining 
disturbanc
e 

Comparative
, treated vs. 
treated 
area, 
radioteleme
try n = 19 

Size of annual home ranges, composition 
of diet, and ratios of young to adult 
females did not differ between female 
sheep inhabiting mined and nonmined 
areas. Nonmined areas had higher forage 
biomass than mined sites, and in spring, 
female sheep had lower forage quality.  
Sheep were reliant on water adjacent to 
the mine which influenced results. 
 

Greatest impacts were observed in 
the summer, recommended either 
providing alternate water sources 
away from the mine to mitigate 
negative impacts or ceasing mining 
activities during the summer.  

Papouchis et 
al. (2001), UT, 
semi-desert 

Oc Yes Unk, 2 
years 

Human 
disturbanc
e, hiking 

Comparative
, behavioral 
avoidance 

Hikers caused the most severe responses 
in desert bighorn sheep (animals fled in 
61% of encounters), followed by vehicles 
(17% fled) and mountain bikers (6% fled). 
Bighorn sheep were avoided around 39% 
farther from roads (490 +/- 19 m vs. 354 
+/- 36 m) than in the low-use area. 
 

We recommend managers confine 
hikers to designated trails during 
spring lambing and the autumn rut 
in desert bighorn sheep habitat. 

Smyth (1997) Oc Yes Unk, 2 
years 

Mining, 
reclamati
on 

Observation
al 

Survival and success of high elevation 
legumes varied as a function of drought 
stress, root exposure by frost-heaving, 
and elevation.  
 

Native Astragalus spp. species can 
be used for mining reclamation. 

Stockwell 
(1991) 

Oc Yes Unk, 1 
year 

Helicopter  
& aircraft 
disturbanc
e 

Observation
al 

Bighorn were sensitive to disturbance 
during winter (43% reduction in foraging 
efficiency) but not during spring (no 
significant effect. Further analyses 
indicated a disturbance distance 
threshold of 250-450 m. 

Restrictions on helicopter 
overflights are recommended for 
National Parks, recommended 
>500m linear distance between 
sheep and aircraft. 
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Table 4. Cont’ Caribou 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Caribou        

Alberta 
Caribou 
Recovery 
Team 2005, 
AB, boreal 
forest and 
foothills 

Rtt No >100,000  
km

2
, 

endanger
ed species 
recovery 
plan 

Oil, gas, 
seismic, 
forestry, 
linear 
developm
ent 

Review Caribou populations declining across the 
province because of cumulative effects 
of energy development 

Aggressive energy development 
restrictions and restoration 
activities required including 
reduced logging, road removal, 
rehabilitation of seismic lines, 
protected areas with no 
development, predator and 
ungulate control 
 

Bradsaw et al. 
1998, AB, 
boreal 

Rtt Yes 20,000 
km

2
  and 

5years 

Petroleum 
exploratio
n 
 

Modeling, 
n=N/A 

Potential loss of mass and increased 
energy costs 

Model may serve as a template for 
future research 

Bradsaw et al. 
1997, AB, 
boreal 

Rtt Yes 20,000  
km

2
 and 

1years 

Simulated 
Seismic 
explosions 

Experimenta
l, n=23 

Exposed animals showed higher mean 
movement rate; no effect of distance 
from animal to canon vs. movement; 
exposed animals showed higher habitat 
patch change; exposure to sound 
reduced feeding time. 
 

Total avoidance of winter 
petroleum exploration rather than 
shorter activity restrictions 

Cameron et al. 
2005, Alaska, 
arctic 

Rtg Yes 8,000 km
2
  

and 
22years 

Petroleum 
developm
ent 

Review calving caribou avoided roads and 
caribou exposed to petroleum 
development may have consumed less 
forage during the calving period. 

Assessments of cumulative effects 
of petroleum development on 
caribou must incorporate the 
complex interactions with a variable 
natural environment. 
 

Cronin et al. 
1998, 2000 
Alaska, arctic 

Rtg Yes 17,000 
km

2
  and 

20years 

Oil fields, 
roads, 
well pads, 
infrastruct
ure 
 

Review Herd-level impacts of the Prudhoe Bay oil 
fields are not apparent on the Central 
Arctic caribou herd. 

Resource extraction and wildlife 
populations can be compatible 
when managed properly. 
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Table 4. Cont’ Caribou 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Dyer et al. 
2000, AB, 
boreal 

Rtt Yes 6,000 km
2
  

and 
1years 

roads, 
seismic 
lines, 
pipelines 
  

Observation
al, n=36 

Seismic lines were semipermeable  
barriers to caribou movements, roads 
were barriers with high traffic. Caribou 
avoided human development by 250 – 
1000 meters (seismic vs wells). 22% - 
48% of study area impacted by roads. 
 

Semi-permeable barrier effects may 
exacerbate functional habitat loss 
through avoidance behavior. Effects 
great year round. 

Dyer et al. 
2001, AB, 
boreal 

Rtt Yes 6,000 km
2
  

and 
1years 

new/old 
well pads; 
roads; 
seismic  

Observation
al, n=36 

traffic indices inconclusive; disturbance 
sites showed bias towards habitat type;  

Fewer human-used/created 
corridors; less industrial 
development; effects greatest 
during summer. 

Haskell et al. 
2006, Alaska, 
arctic 

Rtg Yes 700 km
2
  

and 
3years 

Oil fields, 
roads, 
well pads 

Observation
al, n=up to 
12,000 

Caribou are able to habituate to active 
oilfield infrastructure during and after 
the calving period depending on the 
timing of the spring snowmelt. Groups 
with calves were on average distributed 
farther from infrastructure than groups 
without calves. 

Development of calving period-
specific mitigation measures that 
are effective and flexible is 
important because annual 
rehabituation is correlated with 
timing of spring snowmelt.  

James et al. 
2005 

Rtt Yes 20,000 
km

2
, 4 

years 

Oil and 
gas, 
seismic 
lines 

Observation
al 

Caribou avoided habitats selected by 
wolves and moose, but moose preferred 
habitats impacted by forestry. 

Limit overlap of energy and forestry 
development with spatial refuge 
areas for caribou. 

James & 
Stuart-Smith 
2000, AB, 
boreal 

Rtt Yes  20,000 
km

2
  and 

7years 

roads, 
trails, 
seismic 
lines, 
pipelines 

Observation
al, n=98 

Caribou mortalities attributed to wolf 
predation were closer to linear corridors.  

Development of new corridors 
within caribou habitat should be 
minimized. Existing corridors should 
be made unsuitable as travel routes 
to reduce impacts. 

Johnson et al. 
2006, NWT, 
arctic 

Rtg Yes 190,000  
km

2
 and 

5years 

Energy 
exploratio
n, 
hunting, 
mines. 

observation
al, n=28  

Mines had the largest negative effect on 
species. During post-calving caribou had 
a 37% reduction in the area of the 
highest quality habitats and an 84% 
increase in the area of the lowest quality 
habitats. 

Regional cumulative effects 
analyses serve as the coarsest 
framework for understanding the 
impacts of human developments on 
wide-ranging animals. 
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Table 4. Cont’ Caribou 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Joly et al. 
2006, Alaska, 
arctic 

Rtg Yes Ukn and 
23 years 

Oil field, 
roads, 
infrastruct
ure 

review Calving caribou gradually abandoned the 
oilfield with a drop in abundance by at 
least 72% in spite of the fact that the 
total herd increased 4-5 fold. 
 

 

Mahoney et  
al. 2002, 
Newfoundland
, boreal 

Rtc Yes 12,000 
km

2
  and 7 

years 

Hydroelec
tric 
developm
ent 

Observation
al before, 
during, after 
developmen
t, n=51 

Hydroelectric development caused a 
disruption of the migration timing during 
construction and longer-term diminished 
use of the range surrounding the project 
site. 
 

Long-term studies of individually 
marked animals can aid in 
environmental assessments for 
migratory animals. 

McLoughlin et 
al. 2005, AB, 
boreal 

Rtt Yes Unk and 
11 years 

 Observation
al, n=195 

Uplands present caribou with higher than 
expected levels of predation risk. Caribou 
should max selection of peatlands. 

Linking fitness measures to 
multivariate resource selection will 
enable us to ask questions of 
evolutionary ecology once 
restricted to only the finest 
ecological scales. 
 

McLoughlin et 
al. 2003, AB, 
boreal 

Rtt Yes Ukn and 
10 years 

human 
developm
ent 

Observation
al, n=332 

Wolf predation most common cause of 
death. Calf production 75-95%, mean 
annual recruitment was ~20 calves per 
100 cows. 4 of 6 herds declining. 
 

New land-use guidelines to 
promote caribou conservation 

Nellemann et 
al. 2001, 
Norway, arctic 

Rtt Yes 2900 km
2
  

and 12 
years 

Roads, 
railroads, 
power 
lines 

Observation
al, n=2500 

Density of reindeer was 79% lower 
within 2.5 km from power lines 
compared with background areas. Areas 
within 5km of development were 
avoided in all years. 

Construction of roads, power lines 
and cabin resorts endanger the 
available winter ranges of reindeer 
in southern Norway. 

Nellemann et 
al. 2003, 
Norway, arctic 

Rtt Yes 1350 km
2
  

and 10 
years 

Hydroelec
tric 
developm
ent 

Observation
al, before, 
during, after 
developmen
t n=>2000 

Reindeer densities within a 4km radius to 
infrastructure declined during winter and 
summer with a 217% increase in use of 
the few remaining sites located >4km 
from infrastructure. 

Controlling piecemeal development 
in infrastructure is critical for the 
survival of the remaining European 
populations of wild mountain 
reindeer. 
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Table 4. Cont’ Caribou 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Neufeld 2006, 
Boreal forest, 
foothills 

Rtt Yes ~3500 
km

2
, 3 

years 

Oil and 
gas, 
seismic 
lines 

Observation
al & 
Experimenta
l 

Experimental rehabilitation of seismic 
lines using logging equipment failed to 
elicit any reduced use of cutlines by 
wolves. Spatial overlap between wolves 
and caribou was enhanced by seismic 
lines. 
 

Managers should not assume long-
term impacts of oil and gas 
development can be restored or 
reclaimed.  Cutline restoration will 
require large investment in funding 
to be successful. Better approach to 
reduce footprint initially. 
 

Noel et al. 
2004, Alaska, 
arctic 

Rtg Yes 225  km
2
 

and 23 
years 

Oilfield 
developm
ent, roads 

Observation
al, n=up to 
1,259 

Caribou density after road construction 
was not lower < 1km of roads than pre-
road. # calving caribou in the study area 
has declined since road construction. 
Distribution of caribou was not strongly 
influence by presence of the road. 
 

 

O'Brien et al. 
2006, 
Manitoba, 
Boreal forest 

Rtc Yes 900  km
2
 

and 4 
years 

forestry 
and road 
developm
ent 

Modeling, 
n=11 

Strong relationship between large 
clusters of high-quality winter habitat 
patches and winter GPS telemetry 
locations from two herds in Manitoba 

Results highlight importance of 
accounting for the spatial 
configuration of habitat on the 
landscape and the intervening land 
cover types when assessing range 
quality for woodland caribou. 
 

Schaefer & 
Mahoney 
2007, boreal 
 

Rtc Yes 2700 km
2
  

and 9 
years 

clearcut 
logging 

Observation
al,68 years, 
n=237 
animal-years 

Females avoided cutovers and 
maintained an average of 9.2km from 
active cutovers, males had no response 
to clearcuts. 
 

Long-term investigations are 
needed to enhance our capacity to 
evaluate anthropogenic habitat 
changes. 

Schneider et 
al. 2003, AB, 
boreal 

Rtt Yes 59,000 
km

2
 and 

model 
dependen
t 

energy 
and 
forestry 
developm
ent 

Modeling Model predicts caribou habitat 
availability will decline from present 
levels of 43 to 6% in 40 years. 

Substantial improvement in 
ecological outcomes can be 
achieved through alternative 
management scenarios while still 
maintaining a sustainable flow of 
economic benefits. 
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Table 4. Cont’ Caribou 

Authors, 
location, Veg. 
type 

Spp. Peer 
Rev-
iew? 

Study 
Area Size, 
Duration 

Develop-
ment 
Type 

Sample 
design & 
size General Results Management Recommendations 

Sorenson et al. 
2008, Boreal 
forest 

Rtt Yes 
(In 
Press) 

50,000 
km

2
, 10 

years 

Oil and 
gas 
developm
ent, 
forestry 

Comparative
, n=6 
caribou 
herds 

Compared the cumulative amount of all 
industrial development and natural 
disturbance (fire) against caribou 
population growth rates (Lambda) in 6 
different herds. Lambda well predicted 
by % industrial development. 
 

5 of 6 caribou herds declining in 
study because industrial 
development exceeded thresholds 
of a maximum of about 40-60% of 
the range impacted by industrial 
development. Recommend 
planning at the range level 
(~8,000km

2
) scale. 

 
Stuart-Smith 
et al. 1997, AB, 
boreal 

Rtt Yes 20,000  
km

2
 and 

4years 

n/a Observation
al, n=65 

Adult survival averaged 0.88, calf survival 
was 18 calves/100 cows. Lambda was 
0.92. Lower calf survival and smaller 
home ranges in landscape with less fen 
patches and a higher proportion of 
upland. 

n/a 

Vors et al. 
2007, Ontario, 
boreal 

Rtc Yes n/a and 
15years 

roads, 
utility 
corridors, 
mines, 
pits and 
quarries, 
trails, rail 
lines 

Modeling Forest cutovers were the best predictor 
of caribou occupancy with a tolerance 
threshold of 13 km to nearest cutover 
and a time lag of 2 decades between 
disturbance by cutting and caribou 
extirpation. 

Buffers should be incorporated 
around habitat and range of 
occupancy should be monitored. 

Weclaw & 
Hudson 2004, 
AB, boreal 

Rtt Yes 20,000 
km

2
  

roads, 
infrastruct
ure 

Modeling The most detrimental factor is the loss of 
habitat due to avoidance of good habitat 
in proximity of industrial infrastructure. 
 

Wolf control is not a practical 
solution. Development thresholds 
to maintain habitat required.  

Weir et al. 
2007, 
Newfoundland
, boreal 

Rtc Yes 195  km
2
 

and 
6years 

gold mine 
developm
ent 

Observation
al, before, 
during 
developmen
t, n=~8000 

Caribou avoided areas within 4km of the 
site in most seasons. Group size and 
number decreases as mine activity 
progressed in late winter, pre-calving and 
calving seasons. 

Importance of evaluating the year-
round impact of human-induced 
environmental change. 
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4.0 DISCUSSION 

 Wildlife managers, environmental planners, wildlife consultants, and energy 

developers who had hoped that this review would provide clear recommendations for 

approaches to mitigate the effects of energy development on wildlife populations are 

likely to be disappointed. A number of reviews have already been conducted on the 

impacts of energy development on wildlife, nearly 10% of all studies reviewed in this 

effort were previously conducted literature reviews on exactly the topic covered here 

(e.g., Hayden-Wing 1991,Berger 2004, Bromley 1985). If the preponderance of reviews 

on the subject is any indication, then there is a large demand for information about the 

effects of energy development on wildlife such as ungulates. Many of these previous 

reviews provide information about mitigation strategies for small-scale effects of energy 

disturbance on ungulate behavior, yet most conclude their reviews admonishing 

managers to conduct more long-term, population-oriented studies.  Unfortunately, my 

conclusions from reviewing the literature are that, at least for ungulates, there still 

remains no clear or effective management recommendations that will definitively 

mitigate the impacts of energy development on ungulate populations (emphasis 

added) in the habitats present in eastern and central Montana. 

 I draw this conclusion for the following main reasons. First, to date, there has not 

been one rigorously conducted study (e.g., a replicated experiment) of the effects of 

energy development on ungulates for a sufficient duration of both study and energy 

impact to be able to draw firm conclusions about the population impacts of development 

on ungulates species present in eastern and central Montana. The average duration of 

studies was very short (2.5 years) when compared to the lifespan of ungulates that may 

live for over 20 years. Few studies actually measured adult female survival, and not one 

study reported population growth rate for pronghorn, mule deer, elk or bighorn (caribou 

being the exception). The studies that did measure adult female survival failed to show 

any impact of energy development by and large, but were only conducted for a short 

time period, consistent with the low statistical power (Gerrodette 1987) expected for 

species with high and constant adult survival rates (Gaillard et al. 2000).  For long-lived 

species such as ungulates, impacts of changes to the environment may take up to 
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decades to manifest through cohort effects, compensatory reproduction by adult 

females, resilience in the adult age-cohort, and because ungulates in general have 

extremely high and constant adult survival, even despite large-scale changes in 

environmental conditions (Albon et al. 2000, Coulson et al. 2005, Festa-Bianchet et al. 

2003, Gordon et al. 2004). Following from Gaillard et al. (2000) and Eberhardt (2002), 

energy impacts are expected to manifested first on the least sensitive, but most variable 

population vital rates such as calf survival and recruitment, not the most important, but 

least variable adult survival rates. In fact, ungulate life-history in general makes it 

extremely difficult, or almost impossible, to determine the effects of energy development 

on population parameters within a short 2-3 year study. Recent recommendations of 

reviews of ungulate demography studies suggest that a minimum of 50-60 marked adult 

female ungulates monitored over at least 5-years (Gordon et al. 2003, 2004) are 

required to gain a mechanistic understanding of changes in adult survival rates linked to 

environmental changes such as energy development. While population level surveys 

are capable of picking up important changes (Sawyer et al. 2005), without detailed 

demographic data, mechanisms driving changes will be cause for speculation. Thus, 

long-term changes in the way in which agencies and industry engage in research on 

energy impacts on wildlife need to occur. 

 My second major reason for why I conclude that impacts of energy development 

on populations are not possible at this point in time is because of the timing of many 

studies during early development phases. Following from the arguments above that the 

effects of energy development may take years to manifest on long-lived ungulates, most 

studies reviewed were conducted either during the pre- or first 1-5 years of 

development. This does not give populations long-enough to equilibrate to development 

and loss of habitat. A major additional problem with studying impacts of development 

only early during development is that density of development is confounded with 

duration of development – again confusing clear cause and effect relationships because 

of the period of equilibration that might be required for long-lived ungulates. An extreme 

example of this is the study by Van Dyke and Klein (1996) who investigated the impacts 

of the first oil well constructed in a nearly undeveloped area on elk behavior with a hope 

to estimate population-level impacts. At such low densities, population level responses 
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for a large bodied mobile herbivore would not be expected to occur because, as this 

review confirmed, ungulates can habituate to responses at low enough development 

thresholds. 

 Regardless of these conclusions about the population-level impacts of energy 

development, the review provides some conclusions about the behavior-level impacts of 

energy development on ungulate species that will be useful to planners at the site-level 

of the individual wellsite or road alignment. Many of these behavior-level impacts were 

already summarized by previous literature reviews (Bromley 1985, Hayden-Wing 1991, 

National Research Council 2003,Girard and Stotts 1986). However, the real question is 

whether such small-scale mitigations, referred to as „death by a thousand cuts‟ (e.g., 

Lustig 2002) are useful to scale up to population level responses.  

At the small scale, most ungulates displayed behavioral responses that weakly to 

strongly avoided energy development activities during the development phase (seismic 

blasting, road construction, mining construction, forest operations, and well drilling), 

although responses varied. Pronghorn, elk, and mule deer generally showed the 

strongest avoidance responses, in that order, while bighorn sheep were equivocal in 

their responses to the construction phases of energy development (Table 2, 3, 4). 

Seasonal impacts were variable, and occurred year round during winter ranges, calving 

ranges, migratory corridors, and summer ranges. Early studies tended to focus on 

effects of development on winter ranges, and restrictions on „crucial‟ winter ranges are 

still enforced as small-scale mitigation measures to minimize the impacts of energy 

development on wildlife. However, recent studies seem to show increasing effects of 

energy development on spring calving ranges of ungulates, during summer, and 

especially in migration corridors (discussed below). This may reflect the growing 

appreciation within the literature of the importance of summer nutrition to ungulate 

demography (Cook et al. 2004, Parker et al. 2005). Regardless, clear recommendations 

for timing restrictions on spring calving ranges and critical winter ranges were echoed 

by a majority of studies for all species, especially elk, mule deer and pronghorn. 

Therefore, timing restrictions already developed to minimize the effects of development 

on ungulates during these key times should probably be kept in place and continued to 

be monitored for effectiveness (see below).  
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Also at the small-scale, energy development had impacts on ungulates through 

the effects of roads and the amount of development, which I review next. 

4.1 Effects of Roads 

 Roads are one of the most pervasive impacts of human development on natural 

landscapes (Forman and Alexander 1998), and by far, their greatest impact lies in the 

indirect effects of habitat fragmentation and avoidance by wildlife. By current estimates 

of wildlife-road relationships, the lower continental USA has around 10-20% of available 

habitats impacted to some degree or another by wildlife. Impacts of roads on wildlife are 

not all or nothing, and extend in some continuous function of distance from roads that 

differ in the overall avoidance buffer size across species (Forman and Alexander 1998). 

In a preliminary attempt to extract information about ungulate responses to roads 

associated with energy development for this review, I summarized those studies that 

presented analyses of the effects of distance to energy development (road, wellsite) on 

measures of ungulate resource selection.  

 It is important to note that this zone of influence does not imply 100% avoidance 

(Schneider et al. 2003,Harron 2007), yet from the information presented in many of the 

studies reviewed, actual effective reductions in habitat use was not presented. For 

example, Dyer et al. (2001) found on average 40% reduction within 100m of a seismic 

line, and declines up to 250m away. Powell (2003) reported 73% reductions in use 

within 2000m of energy development, but other studies did not usually present enough 

information. In the 8 or so studies that did report some sort of avoidance effect of roads 

that was quantifiable, the average „zone‟ of influence extended approximately 1000m 

from both roads and wells, though responses varied within seasons and between 

species (Table 5). In general, ungulates avoided roads more during the summer months 

than during winter, when they were often constrained to be closer to roads because of 

increased snow depths, etc. Regardless, even considering an effective loss of habitat of 

50% within this zone of avoidance and a modest buffer size of 500m reveals that 10% 

of a study area can be effectively lost due to indirect avoidance of roads under 

optimistic assumptions. The role that overlap between well sites and roads plays on the 

effects of habitat loss due to avoidance is important and should be investigated in detail 
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in the kinds of habitats present in eastern Montana because of the importance of spatial 

configuration of habitats in determining road impacts (Rowland et al. 2000,Frair 2005).  

 

Table 5. Summary of ungulate studies showing avoidance of 
roads and well sites, averaging results across seasons and 
habitat types. 

  Avoidance Buffer (m) 

Author Species Roads Wells 

Gillan (1981) Elk 1200 500 

Edge (1982) Elk 500 1000 

Rost (1988) Elk 200  

Dyer et al. (2000) Caribou 250 1000 

Sawyer et al. (2005) Mule deer 2700  

Powell (1988) Elk 2000 2000 

Frair (2005) Elk 200  

Ward (1986) Elk 2000  
 Average 1131 1125 

 

 

 

 

 

 

 

 

 

Fig.11. Simple algebraic models for the effects of increasing wildlife buffer avoidance size 
as a function of linear disturbance and the density of wells, assuming no overlap of 
buffers of disturbances – an unlikely biological scenario. However, these are useful as 
guidelines because the actual effects of overlap will be landscape specific, although they 
will tend to cause the relationships to decline asymptotically to a lower % total area 
impacted. Studies of the effects of road and wellsite distribution in grassland and sage-
steppe habitats are needed. 
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4.2 Amount of Development 

I extracted the density of oil and gas development from studies where possible. 

Unfortunately, from the n=70 or so studies that investigated the direct impacts of 

development on wildlife, only a handful (n=12) presented sufficient information to be 

able to estimate either the density of wellsites or the density of linear disturbance (road, 

seismic Table 6).  Undoubtedly, with additional research and perhaps change detection 

remote sensing studies, densities of development during the actual study could be 

backcast for meta-analyses (see below). For these 12 studies, I attempted a simple 

univariate meta-analysis of development densities for studies that reported a significant 

statistical effect of energy development on some response variable against those 

studies with no effect. I present these results only as preliminary results of univariate 

meta-analyses as an example what additional investment in meta-analyses of existing 

data could yield. Caveats of this simple summary are many; scale effects of study area 

size and determination were not accounted for, study duration was also not included, 

and sample size of the original study, and its variance, were not considered. 

Regardless, studies that showed a significant impact of energy development tended to 

have a much higher density of both wellsites and roads, consistent with ecological 

theory (Forman 1998) and results of individual studies. Somewhere between 0.1 and 

0.4 wells/km2 and between 0.18 and 1.05 linear km/km2 of development significant 

impacts started to manifest on ungulate species including mule deer, pronghorn and elk. 

Additional research is necessary, however, to disentangle effects of sample size, study 

duration, and impact type (behavioral, habitat effect, population) on the relationship 

between development density and impacts. I review formal meta-analyses below as a 

next step in energy-wildlife research needs. 
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Table 6. Summary of density of energy development disturbance in terms of 
density of active wellsites/km2 and linear kilometers of pipelines, seismic lines 
and roads / km2 from studies where such information was reported.  Despite 
small sample sizes of studies that reported densities, ambiguities in definition of 
study areas, and simplification of impacts to a binary variable, densities of 
disturbance appears to be related to the impact of energy development.  
 

Study Density of 
Wells/km2 

Linear km of 
roads / pipelines 
/ seismic / km2 

Significant 
Impact?3 

Knight et al. (1981) – Ce1 0.088 N/A NO 
Olson (1981) – Ce N/A 0.15 NO 
Rowland et al. (2000) -  Ce N/A 0.62 YES 
Sawyer (2002)  - Aa, Oh N/A 0.62 YES 
Bennington (1981) – Ce 0.20 N/A NO 
Van Dyke & Klein (1996)  - Ce <0.001 N/A NO 
Sawyer (2005a, b)2 – Oh 1.01 1.36 YES 
Berger (2005, 2006)2 – Aa 0.25 0.20 NO 
Frair et al. (2005, 2007) – Ce 0.20 1.6 YES 
    
Easterly et al. (1991) – Aa 0.27 N/A YES 
Ihlse et al. (1981) – Oh 0.003 N/A NO 
    
Summary Statistics Mean (n) Mean (n)  
Significant Impact – Yes 0.49 (3) 1.05 (4)  
Significant Impact – No 0.10 (4) 0.18 (2)  
1- Species are as in Tables 3-4. 
2- These two sets of studies occur in approximately the same area but defined different 

study area sizes based on species life history. 
3- Significant impact is a simple binary variable confirming whether statistically significant 

effects of energy development were detected on key response variables. 

 

4.3 Limitations 

4.3.1 Experimental Design  

 

 Despite the useful information provided in the reviewed studies for developing 

preliminary guidelines to guide energy development to minimize impacts on ungulate 

species, my review revealed several major problems with previous studies including 1) 

poor experimental design including lack of replication, controls and pseudoreplication, 

2) limitations of scale, 3) and poor execution and timing with respect to energy 

development. Gill (2001) provide an excellent review of experimental designs for large 
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scale adaptive management experiments required to tease apart reasons for mule deer 

declines in Colorado, many of which would be suitable designs for determining the 

effects of energy development on wildlife.  I briefly touch on experimental design issues 

here (Krebs1989, Underwood1997, Gill 2001, Williams et al. 2002). 

From a traditional scientific paradigm, reliable knowledge is generated through 

carefully thought out and planned replicated experiments that are designed to test a 

specific hypothesis, then revised once that hypothesis is accepted or rejected and a 

new experiment designed. In ecological systems, researchers and managers often do 

not have the luxury of conducting one at a time experiments just to test one hypothesis; 

instead, the philosophy of multiple working hypotheses is adopted (Chamberlain 1890, 

Burnham and Anderson 1998). Regardless, experimental controls in a replicated 

system provide the strongest inference.  

Unfortunately, of the reviewed studies, the vast majority employed an 

observational or correlational-design (47%), where responses within one population to 

human disturbance are regressed against some covariate such as distance to roads 

(Fig 14). While useful, it is difficult to determine cause-and-effect relationships or 

mechanisms in such studies. Many observational studies were gray-literature reports 

designed as a mitigation strategy to permit development (which I discuss below). 

Reviewing these studies especially gives the impression of the following common 

scenario (summarized succinctly by Lustig (2002);  

1) A permit for drilling a well is requested in an area defined as critical winter range 

for an ungulate. 

2) The permit is granted with stipulations that minimize putative negative effects by 

minimizing temporal risks during critical times (calving). 

3) Either because of violation of the stipulations, or in fact as an additional 

stipulation, a study is commissioned to investigate the effects of energy 

development activity X on wildlife species Y.  

4) The correlative study is often designed hastily, with inadequate resources, 

sample size, temporal or spatial scope, without pre-development data, nor any 

commitment to monitoring beyond the intended life of the development phase.  
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In the course of my review, I have come to the conclusion that wildlife biologists, as a 

profession, are failing to live up to professional standards and guidelines of their chosen 

professional organization, The Wildlife Society, by agreeing to participate in these 

poorly-designed studies that are merely aimed at appeasing the small-scale regulatory 

process. The huge number of animals captured and handled (>2000), their capture-

related mortality, the huge financial investments made by energy development 

companies, and the huge investment in personnel time do not weigh favorably against 

the meager conclusions about the effects of energy development on ungulate 

populations. Figure 6 reinforces the impression that the bulk of studies of wildlife-energy 

relationships have been reactive, driven by trends in oil production, not part of any pro-

active adaptive management program. At the least, I hope this review convinces some 

of the need for better designed studies of energy-wildlife impacts. 

Comparative studies provide stronger inference, for example, between the same 

population before and after without a control, and were employed in 19% of studies 

reviewed. The lack of a control makes it difficult to determine whether changes before 

and after development were due to the development, or some unmeasured covariate, 

for example, snow or weather. For this reason, comparative studies, while an 

improvement, will be unable to provide strong inference about the effects of 

development on populations.  

The third kind of study design, experimental, is when effects of development on 

ungulates after development occurred are compared between a control and developed 

population, without before data on the development population (Fig. 14). Eighteen 

percent of studies reviewed used this design. This example was common when pre-

development data were not available, usually because the study was designed as an 

afterthought to development or to allow violation of a stipulation for drilling during 

exploration. The problem with experimental comparisons of this kind is that without data 

on the pre-development population, it is difficult to conclude that differences between 

treatments were not due to some additional, unmeasured variable present in the 

treatment population. This is a serious concern where experimental units cannot be 

randomized and where replication is difficult; both conditions are prevalent in all wildlife-

energy studies. Randomization is so difficult to achieve at the level of assigning 
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treatments that I do not discuss it further here; but randomization of the assignment of 

control populations could conceivably occur, and randomization of animal‟s 

radiocollared within studies should also occur as possible. A good example of a strong 

experimental comparison amongst the studies reviewed were the Upper Green River 

Basin studies on pronghorn by Berger (2004, 2006) and colleagues. The study used a 

treatment and control group, but had limited data pre-development, although as energy 

development increases in the study area, the first year of the study may very well serve 

as pre-development conditions. If so, this would make this study design very powerful. 

The most powerful design, that of a before-after-control-impact design (BACI, 

Underwood 1997) was employed in 18% of studies reviewed. BACI designs are 

amongst the most powerful experimental designs because effects of development are 

compared between a treatment and control simultaneously both before and after 

development. This design alleviates difficulties with previous designs controlling for 

spatial and temporal confounding. The best example of this BACI design in all the 

studies reviewed are epitomized by the studies on the Sublette mule deer herd because 

they had extensive pre-development data on mule deer survival and habitat use, 

compared to 5-years and running of post-development data between a control and 

treatment population (Sawyer et al. 2005, 2006). Priority should be given to maintaining 

funding for this study especially because of its relevance, large spatial scale (see 

below), and strong design.  

Despite these compliments, a central tenant of experimental design, replication, 

was absent from all reviewed studies. Not one study was replicated at the level of 

treatment. Obviously replication at the spatial scale here is difficult to achieve, but future 

efforts should be made to initiate additional studies in areas with and without 

development to serve as meta-replicates; that is, replicates at the scale of meta-

analyses between populations. 
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4.3.2 Spatial Scale  

 A difficult problem in ecology is how to scale-up from short-term small scale 

behavioral decisions of animals to long-term landscape scale population and 

distributional responses. The difficulty in scaling up is why so few of the studies that 

showed short-term responses were able to measure or demonstrate these long-term or 

population level responses. A second scaling problem is presented by Berger et al. 

(2007) when discussing issues of spatial scale and habitat fragmentation, both of which 

are totally dependent on each other (Dale et al. 2000, Turner et al. 2001).  Quantifying 

habitat fragmentation metrics will be completely determined by the study area size, and 

for this reason, many authors recommend conducting multi-scale analyses of the effects 

of habitat fragmentation on wildlife species (Turner et al. 2001, Harrison and Bruna 

1999).  
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 In many of the studies I reviewed, there was a third scaling problem – that of 

extrapolating responses. This occurred where the effects of a local point source 

disturbance (wellsite) was assessed at the population or at the home range scale, and 

results extrapolated well beyond the development densities under which the response 

was studied. For example, Van Dyke and Klein (1996) document the responses of elk 

home ranges to installation of a single well in a hitherto undeveloped grassland 

ecosystem in north central Montana. This was the first well to be installed in a 200km2 

area, an extremely low well density. The authors basically found few impacts of the well 

installation on elk home range use, and no lasting impacts on behavior or habitat use. 

The results of this study have been extrapolated to other wells across Montana, yet the 

validity of extrapolating the finding of no significant impacts to areas of higher well 

density, for example, is questionable. This emphasizes the need to establish thresholds 

for development or broad, regional scale cumulative impact assessments as the density 

of well sites and development increases. 

 Finally, there was often a scale-mismatch between the spatial scale of the study 

in question, most often focused on some crucial winter range, and the spatial scale of 

the population under investigation. Assuming the goal of an impact study is to assess 

the impacts of a particular development on a population, unless the study area 

represents the annual range occupied by the ungulate population, it will become difficult 

to evaluate whether the changes in the population are occurring because of energy 

development on the winter range, or because of undocumented changes occurring 

elsewhere in the populations range, for example. 

 One potential solution to the issue of how to determine the appropriate study 

scale is to use the spatial scale of migration as a guideline in migratory populations. 

Berger (2004) reviews long-distance migration throughout western North America and 

worldwide, and migration distances for ungulates in western North America are 

presented in Table 7. While not all populations are migratory, the reported degree of 

partial migration ranged from 45 to 100%. Considering the one-way migration distances 

as a buffer of any particular energy development suggests that the correct spatial scale 

to consider evaluating the effects of energy development could range from 1500km2 for 

bighorn sheep to nearly 19,000km2 for pronghorn. Notably, when compared to the scale 
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of reported study areas in this review, these rough guidelines are much greater than 

reported by studies attempting to address development impacts in the literature. Surely, 

study area specific guidelines should be developed once migratory movements are 

determined, but these guidelines emphasize the large spatial scale required to 

understand population-level impacts. 

 

Table 7. Summary of one-way migration distances recorded in selected 
reviewed studies that were mainly summarized by Berger (2004). Assuming 
the goal of the energy-wildlife impact study is to make inferences to the 
population, the study area size and spatial scale that impacts should be 
assessed over can be calculated as the spatial scale of migration. 

Study Species 
Distance 

(km) SE 
% 

Migrant n 

Sawyer et al. 2005 Pronghorn 177 2 95 34 pronghorn 
Sawyer et al. 2005 Mule deer 84 5.1 100 158 deer 
White et al. 2007 Pronghorn 35 --- 70% 44 pronghorn 
Berger 2004 Pronghorn 137 12.1 N/A 7 pops. 
Berger 2004 Mule deer 73 5.2 N/A 16 pops. 
Berger 2004 Elk 93 7.1 N/A 7 pops. 
Berger 2004 Bighorn 39 4.1 N/A 5 pops. 
Berger 2004 Caribou 71 7.9 N/A 4 pops. 
Berger 2004 Moose 85 4.3 N/A 13 pops. 
Hebblewhite et al. 
2006 Elk 55 8.9 45% 60 elk 
 Summaries     

 Species 
Study area size required to contain 

migratory movements 
 Elk 8,464 km2   
 Mule Deer 5,423 km2   
 Pronghorn 18,769 km2   
 Bighorn 1,521 km2   
 Caribou 5,041 km2   

 

4.4 Potential Toxicological Impacts 

 Girard and Stotts (1986) are the only studies in this review that specifically 

mention the potential negative effects of H2S (hydrogen sulphide) on wildlife species. 

Yet recent studies have demonstrated the potential negative effects of H2S emitted from 

sour gas wells (natural gas fields) on domestic cattle in Alberta (Waldner et al. 2001a,b, 

Scott et al. 2003a), although results are equivocal at this point (Scott et al. 2003b). 
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Moreover, there is increasing interest in investigating the human health consequences 

of sour gas emissions from natural gas wells, with recent studies potentially linking H2S 

emissions to human health and increased risk of cancer, cardiovascular disease, and 

endocrine dysfunction (Saadat et al. 2006, Roth and Goodwin 2000, Waldner et al. 

1998) and even real estate prices. A recent government sponsored study in Alberta 

emphasizes that H2S should be considered a broad-spectrum toxicant, and that 

repeated exposure may result in cumulative health impacts on the brain, lung, and heart 

(Roth and Goodwin 2000), although the report calls for increased medical research to 

establish cause-and-effect relationships. Regardless of the uncertainty regarding the 

effects of emissions from energy development on wildlife, it is surprising that no studies 

have investigated the effects of increased exposure to toxic chemicals emitted from oil 

and gas wells. Collaboration with ecotoxicologists is recommended as a future area of 

potentially important research 

4.5 Conceptual Approach for Understanding the Effects of Energy 

Development on Wildlife 

 One of the conclusions from this review is that the effects of energy development 

on ungulate species will be manifested through changes in the ecological communities 

of species, including humans, in which they exist. As such, impacts of energy 

development on ungulates can be classified into direct impacts and indirect impacts. 

Distinguishing between direct effects and indirect effects and between species is critical 

to understanding the mechanisms of energy development impacts on ungulates, and to 

providing effective mitigation strategies to ensure the sustainability of energy 

development. In community ecology, direct effects between species (e.g., human, 

energy development, and elk) occur when there are no intermediary species between 

two interacting species, for example, through direct mortality associated with energy 

development (road kills, poaching, destruction of nests, etc Estes et al. 2004).  Most 

direct effects are classified as either predation (energy development directly kills wildlife 

species) or habitat destruction, where the population size of wildlife is directly reduced 

because of the reduction in available forage as a result of development (area of habitat 

directly lost by well sites, roads, compressor stations, etc). 
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In contrast, indirect effects of energy development are where impacts on a 

wildlife species are mediated by an intermediate species. As an example of indirect 

effects, Fig. 12 illustrates the indirect effect of energy development on sage grouse and 

kit foxes (Vulpes macrotis) mediated by human caused changes in the densities of 

important predators in this terrestrial grassland community, such as coyotes (Canis 

latrans) or red-tailed hawks (Buteo jamaicensis, e.g., Fig. 12). In this example, raptors 

have increased predation rates on sage grouse because of increased perching habitat 

near attractive sink habitat near road ditches for sage grouse (Aldridge and Boyce 2007, 

Fletcher et al. 2003). Similarly, coyote populations increase following human 

development because of habitats associated with human development supports higher 

densities of small mammals, causing increased predation by coyotes on kit foxes 

(Haight et al. 2002a).  

Effects of energy development will likely go far beyond direct impacts purely 

based on community ecology theory (Estes et al. 2004).  Recent reviews have reminded 

ecologists that direct effects are but a fraction of the potential species interactions 

possible in even a simple food-web (Estes et al. 2004, Bascompte et al. 2005). For 

example, in Fig. 13, the total number of direct interactions (such as direct mortality) 

between the six species is 30, whereas the number of indirect species interactions is 

1,920! (see Estes et al. (2004) for calculations).  This emphasizes that wildlife managers 

should be very concerned about indirect effects of energy development in Montana and 
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design effective strategies to mitigate them. 

Indirect effects of energy development can also arise because of behavioural 

changes by ungulates in response to energy development such as avoidance of roads 

and wellsites. These results have been corroborated across systems and at larger 

scales in ungulates confirming the importance of indirect behavioural effects, such as 

the avoidance of predation risk and human disturbance (i.e., energy development) by 

ungulates on ecosystem dynamics (Fortin et al. 2005, Rothley 2001, Hebblewhite et al. 

2005).  

Despite the theoretical support for the importance of indirect effects, a cursory 

review of the literature on the subject of impacts of energy on wildlife reveals a 

seemingly myopic focus of mitigation strategies on reducing direct effects such as road 

mortality and direct habitat destruction (BLM 2003a,b). A renewed focus on the indirect 

effects of energy development mediated by community level changes in species will 

underscore the influences of indirect effects in the cumulative impacts of energy 

development. In this literature review, I will test the hypothesis that indirect effects are 

more prevalent than direct effects of energy on ungulate species. If indirect effects are 

more common than direct effects, I expect to find evidence that the impacts of energy 

development on wildlife are mediated by changes in community dynamics of other 

species (i.e., increased human access during hunting season, increased coyote 

abundance, etc.,) or through behavioural changes of ungulates in response to energy 

development.  

 

 

 

 

 

 

 

 

 

 

Fig.14 .  Conceptual diagram illustrating the importance 
of indirect species interactions in understanding the 
effects of energy development on wildlife. A conceptual 
three-trophic level food web illustrating direct (solid) and 
indirect (dashed) interactions between human energy 
development, carnivores, herbivores, and plants is 
shown. Predation and other direct interactions 
(competition, etc) are illustrated by black and gray lines, 
respectively. Fourteen of 30 direct species interactions 
are shown, whereas only 1 of 1920 potential indirect 
effects are shown, in this case, the indirect effects of 
human energy development on plant species 1 
mediated via changes in the abundance of herbivore 1. 
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4.6 Recommendations for Future Energy Development Impact 

Studies on Ungulates in Eastern Central Montana 

4.6.1 Meta Analyses  

 Meta-analysis is the most rigorous form of synthesis and review in the scientific 

literature, and is used to combine results of analyses into one synthetic framework to 

test broad hypotheses in science (Hobbs and Hilborn 2006, Osenberg et al. 1997, 

Hedges et al. 1999, Arnqvist and Wooster 1995). Great advances have been made in 

the recent decade in ecology in particular by synthesizing results of single studies to 

test broad ecological hypotheses, for example about the effects of predators on 

ecosystems (e.g., Schmitz et al. 2000, Shurin et al. 2002).  In its simplest form, each 

study becomes one replicate in the meta-analysis, thus, meta-analysis is extremely 

useful for augmenting statistical power in hypothesis testing because multiple small-

scale studies are combined effectively as a series of replicated studies.  

Meta-analysis of the effects of energy development is the next logical step to 

take to quantify the impacts of energy development on ungulates following standard 

meta-analysis. Three basic pieces of information from published studies are required to 

conduct meta-analysis; the mean treatment effect, the sample size (n), and the standard 

deviation in the response (Schmitz et al. 2000, Gurevitch and Hedges 1999, Arnqvist 

and Wooster 1995). For advanced meta-analysis, extraction of more detailed 

information from each study area; such as road density, well density, date of initiation of 

development, etc., could help elucidate responses of wildlife to energy development in 

formal meta-analyses. For each study, the mean values are extracted for response 

variables from the experimental (energy development) treatment (
E

jX  where E is 

experimental) and the control treatment (
C

jX where C is control). The difference 

between two treatments for the jth study, or the effect size, is calculated by the difference 

of the means following: 

C

j

E

jj XXE   (equation 1). 

While effect size is an intuitive metric, it is difficult to compare across studies and 

different response variables because of scaling issues (Hedges et al. 1999); how does 
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one compare the magnitude of the difference in survival which may be small, especially 

with ungulates (e.g., 0.1) with the magnitude of flight response between studies?  A 

better measure is the log response ratio, jL , for several reasons (see Oseberg 1999 for 

details). Meta-analyses uses the response-ratio to estimate the effect size of the energy 

development between the treatment and control (Hedges et al. 1999,Gurevitch and 

Hedges 1999) following: 

)log( C

j

E

jj XXL   (equation 2) 

Response ratios less than 1 represent the hypothesis that energy development has a 

negative impact on the response variable, and vice versa for values greater than 1. For 

parameters that may be changing over the duration of energy development (i.e., as the 

ungulate population equilibrates to the new disturbance, lost habitat, changed predator-

prey regimes, etc), it is important to consider trends over time in the response ratio 

(Osenberg et al. 1997).  If effects are not constant, it is important to report the trend in 

effects.  Variance in log response ratios are calculated following Hedges et al. (1999). 

As an example, I illustrate meta-analysis using a hypothetical example of a review of the 

effects of energy development on survival of adult female pronghorn, elk and mule deer 

(Box 1). Meta-analysis of the literature reviewed in this study would help formalize the 

tantalizing syntheses presented in Tables 4 and 5 that are suggestive of thresholds in 

responses of wildlife to the amount of energy development, and calculate averaged 

responses of wildlife avoidance of roads associated with human development.
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Box 1. Meta-analysis illustrated with a 
hypothetical example of a review of the 
effect of energy development on survival 
rates of adult female pronghorn, elk and 
mule deer.  
 
The first figure (a) shows a well designed, 
replicated (see section 4.4) study on the 
effects of energy development on survival of 
adult pronghorn in a before-after-control 
impact design (BACI). The magnitude of the 
difference in survival between the 
control/before treatment and the impacted 
treatment (0.85-0.63 = 0.22) is termed the 
effect size of the treatment (see equation 1 
above), in this case, energy development. 
Sample size is the number of collared animals, 
and the wider confidence intervals in the 
impact represent the common situation of 
greater variation in the treatment response, 
emphasizing the importance of sufficient 
sample size. 
 
In the second figure (b) the log response 
ratio (see equation 2) from a number of 
different studies on ungulate survival have 
been summarized. Response ratio‟s greater 
than zero represent a net positive impact of 
energy development and values less than zero 
represent a net negative impact of the 
treatment across studies (n is now # of 
studies).  Effect sizes are standardized with 
respect to the sample size and variance of the 
data in figure (a) for each study. Deer illustrate 
the case where too few studies were likely 
conducted to draw concrete conclusions. 
 
In the final figure (c) the response ratio is now 
regressed against some consistent spatial 
measure of habitat fragmentation (in this case 
density of wellsites/km2) to test for thresholds 
in the cumulative effects of development on, in 
this example, ungulate survival rates. In this 
example, if the standardized effect size, Z, 
corresponding to the maximum decrease in 
ungulate survival was -0.2 (which could 
correspond to a survival rate of 0.75), then the 
threshold for wellsite density would be 
approximately 3 wells/km2.  
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4.6.2 Habitat-linked cumulative effects assessment 

Johnson et al. (2005) and 

Johnson and Boyce (2005) 

provide a template for the 

assessment of regional 

cumulative environmental effects 

on 4 species of wildlife in the 

central Canadian Arctic in a 

region of rapidly increasing 

diamond mine (and oil) 

exploration and development. 

The area in which regional 

development impacts were 

assessed was a huge area, over 

a 190,000km2 area for four 

wildlife species; caribou, grizzly 

bears, wolves and wolverines. 

Lack of adequately sized spatial 

or temporal controls, the sheer 

size and difficulty of collecting 

wildlife data in the study area, 

and the availability of existing wildlife telemetry data lent themselves to a habitat-

modeling based assessment of development impacts. Under the assumption that 

resource selection ultimately dictates population demography of wildlife species 

(Boyce and McDonald 1999, Manly et al. 2002), Johnson et al. (2005) developed 

habitat-based population viability model based on Resource Selection Functions 

(RSF). Briefly, once focal species are identified, RSF models that quantify the 

relationship to human activity are developed. Next, potential habitat disturbance 

caused by energy development is modeled as a function of future landscape 

scenarios (Johnson et al. 2005, Schneider et al. 2003), and the area of effective 

habitat loss is measured using the RSF model. The assumption that habitat 

Fig.15. From Johnson & Boyce (2005). Analytical 
framework for the development of habitat linked PVA 
analysis to assess the impact of wildlife within a 
population undergoing energy development. 
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quality predicted by RSF models relate to population sizes has been recently 

supported in several studies on caribou (Seip et al. 2007) and grizzly bears 

(Ciarniello et al. 2007, Boyce and Waller 2003). Then, given a reduction in 

habitat quality revealed by the RSF model, a habitat-linked population viability 

model (Haight et al. 2006, Carroll et al. 2003) can be developed to evaluate the 

effects of competing energy development scenarios on wildlife. I agree with 

recent authors (Carroll and Miquelle 2006, Morris and Doak 2002) that caution 

against treating the predictions of such PVA as quantitative. Rather, recent 

studies show that habitat-linked PVA provides relative comparisons between 

alternate development scenarios. As such, habitat linked PVAs could be a useful 

modeling tool for adaptive management (see below). The limitations of this 

approach is the fundamentally correlative nature within one population 

undergoing energy development; whether relationships hold over future 

development patterns need to be assessed through continued monitoring, and 

whether the link between resource selection and fitness is necessarily held in 

wildlife populations impacted by human development (e.g., Mcloughlin et al. 

2005) needs to be tested. A comparative study design between populations that 

are and are not impacted by development would be a stronger approach. 

4.6.3 Large-scale, replicated experimental tests of the impact of energy 

development on ungulates. 

 As this literature review summarizes above, the current state of knowledge 

about the impacts of energy development on wildlife is woefully lacking on 

several critical fronts. First, knowledge of the effects of long-term impacts on 

wildlife population parameters is essentially absent – study duration averaged <3 

years, an inadequate timeframe to assess the impacts of energy development on 

long-lived ungulates. With dozens of short-lived studies, we literally have almost 

no idea what population responses to energy development will be.  

Second, by and large, studies conducted to date have suffered from 

extremely poor experimental design, lack of controls, and lack of replication, and 

when present, pseudoreplication; mismatches between the scale of the problem 
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and the scale of investigation, and a general tendency to be reactive, post-hoc 

designed studies developed as part of a mitigation strategy to allow continued 

development instead of an a-priori designed adaptive management process. 

These difficult problems provide managers little guidance on how to minimize the 

negative effects of continuing energy development at the population level. 

Fortunately, Montana Fish Wildlife and Parks, along with other key 

partners, including industry, have a successful history of working together to 

assess the impacts of human development on ungulates at large scales. The 

Montana Cooperative Elk Forestry study epitomizes the cutting edge of forestry-

wildlife relationships at its time, with 6 replicated studies across the state of 

Montana (Fig. 8). The study monitored the results of different management 

treatments on elk response to human activity across different spatial scales. This 

time, the stakes of development will be higher, with the projected impacts of 

energy development potentially exceeding impacts of logging in the western half 

of the state.  

Clearly, designing long-term replicated studies across several locations in 

eastern and central Montana (potentially even replicated across states such as in 

the Upper Green River Basin of Wyoming) represents the next step in developing 

a scientific assessment of the effects of energy development on ungulates. Basic 

principles of experimental design should be followed, with control and replicate 

treatment populations monitored across similar habitats for a sufficient duration 

(10-years) to determine population level responses. Gill (2001) provides useful 

recommendations for large scale, population-level experiments in their review of 

the underlying causes of mule deer declines in Colorado. Building on the meta-

analysis of the effects of energy development on wildlife, power-analyses 

(Gerrodette 1987) could be conducted to determine the appropriate study 

duration to ensure that population level responses are documented a-priori. This 

would alleviate the problem of uncertainty over impacts where ongoing studies 

fail to show any population responses in initial years of the study (Berger et al. 

2007,Sawyer et al. 2006) – if a-priori power analysis confirmed that it will take 10 

years to determine even small changes in adult female survival of ungulates 
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(e.g., 4%), then preliminary analyses would be interpreted within the limits of 

statistical power. In that case, based on the expected treatment responses and 

appropriate scales  of investigation of the population (see migration section 

above), well designed, replicated experiments between developed and 

undeveloped areas could be implemented that would allow MTFWP to rigorously 

test for the effects of energy development on wildlife.  

However, this approach will ultimately fail if the current policy for energy 

development is incompatible with wildlife conservation. Some have criticized the 

current policy as an incremental energy development policy where development 

is approved on a piecemeal and uncoordinated basis in a linearly increasing 

fashion (Lustig 2002, Nelleman et al. 2003). From a policy perspective, we are 

currently operating under the hypothesis that wildlife and continued incremental 

development are sustainable. If we really want to advance wildlife conservation 

under energy development, we should endeavor to test this hypothesis by 

comparing this policy against alternative policies. To advance our 

understanding of how to mitigate energy-wildlife conflicts two things are 

required; 1) innovative new policies for large-scale energy development, 

and 2) an adaptive management approach.  

 

4.6.4 An Adaptive Management Framework for Assessing the Cumulative 

Impacts of Energy Development on Ungulates  

 Walters (1986) defined the adaptive management process as follows: "the 

central tenet that management involves a continual learning process that cannot 

conveniently be separated into functions like research' and ongoing regulatory 

activities,' and probably never converges to a state of blissful equilibrium 

involving full knowledge and optimum productivity."  Adaptive management has 

often been co-opted by management agencies to mean “learning by doing," but 

Walters (1997) criticizes many management agencies for missing the critical 

point of adaptive management – experimentation, controls, and adequate 

monitoring – without these key steps, there is no difference between adaptive 

management and „regular‟ management that seeks only to satisfy short-term 
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objectives without ensuring that long-term problems are adequately addressed.  

Walters (1986) describes the adaptive management process of:  

1. Bounding management problems and recognizing constraints; 

2. Representing existing knowledge in models of dynamic behavior that 

identify assumptions and predictions so experience can further learning;  

3. Representing uncertainty and identify alternate hypotheses;  

4. Designing policies to provide continued resource productivity and 

opportunities for learning in experimental comparisons of policies. (Fig. 

16) 

Adaptive management has been applied previously to large scale environmental 

problems in the United States with great success. Bormann et al. (1998) 

proposed an adaptive management process for the Pacific Northwest in 

response to concerns sparked by the spotted owl controversy - the Northwest 

Forest plan that affected a huge geographical area. The plan proposed 10 

adaptive management areas with different management policies for forest 

management, and developed a framework for managers, scientists, and industry 

to determine improvements to policies that would allow societal goals for 

resource extraction to be met while minimizing negative environmental effects.  

 An adaptive management experiment on the effects of energy 

development on ungulates in Montana would help address proposed changes to 

energy regulation that are hypothesized to minimize negative effects of 

development. At present, the policy for energy development could be described 

as “incrementalist‟, where gradually, phased development increases at regional 

scales in incremental steps until the entire area is brought into energy 

development. Under this policy, the % area affected by development will increase 

continually over time. Impacts are only assessed at small, local scales, usually at 

the scale of individual wellsite developments. Small scale timing restrictions (i.e., 

no drilling on winter ranges, calving ranges, etc.) represent the policy hypothesis 

that the main impacts of development are behavioral only, and that through 

avoidance of key behavioral periods, development impacts can be minimized. 
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Moreover, management policies designed to minimize development impacts at 

these small scales are hypothesized to mitigate impacts at the larger, regional 

scale. Both the small and large-scale predictions of this management hypothesis 

are as yet untested. This model of development is the current favored policy 

alternative amongst federal and state energy regulators by default.  

 An alternate policy that has been proposed could be called „phased‟ or 

spatially concentrated development where energy development is concentrated 

geographically to maximize extraction rates of resources, minimize the % area 

developed, and localize impacts. Under this policy, rehabilitation of the 

developments would be encouraged as policy before additional sites were 

developed, and the overall population level impacts on key wildlife species is 

hypothesized to be ameliorated compared to incremental development. The 

predicted area impacted would be expected to increase non-linearly to some 

asymptotic threshold determined by the rate of new phases coming on-line and 

cycling through the development and restoration phase.  

A third policy could be described as a protected area policy that identifies 

core areas for multiple species (e.g., pronghorn, mule deer, sage grouse, sage 

brush) that are protected from oil and gas development to provide critical habitat 

for threatened or (potentially) endangered species, and the ecosystems on which 

they depend (i.e., sagebrush steppe). This would ensure viable populations at 

some large, landscape scale that maintained populations and connectivity while 

allowing incremental development outside of these protected core areas. This is 

a model that is gaining support for threatened boreal caribou based on the 

scientific evidence that present levels of industrial development in many herds 

exceeds critical thresholds, causing populations to decline. Predicted area 

impacted under this policy would be expected to asymptotically increase to some 

threshold similarly to the phased policy, but the threshold would be set by the % 

of the landscape protected under core areas.  

Under adaptive management, these „simplified‟ policy alternates could be 

scientifically evaluated by encouraging development under the three hypothetical 

policies in two ecologically similar areas, and by monitoring responses of key 
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wildlife (ungulate) populations at these two sites, and a similar experimental 

control population, over the duration of the energy development project (10-20 

years long-term), in a replicated design. Whether these policy alternatives are 

indeed, reasonable is beyond the scope of this review. The critical point is that 

under adaptive management, resource extraction would be permitted to continue 

in a controlled fashion, embedded within an adaptive management framework 

that would ensure that 20 years from now, additional reviews on the effects of 

energy development on wildlife have something to report, and not just review 

another batch of poorly designed studies that fail to address the pressing policy 

decisions facing wildlife and land managers. 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.16 .  Conceptual diagram of adaptive resource management as defined by Walters 

(1986, adapted from http://www.cmar.csiro.au/research/mse). Critically, management 

experiments are designed that contrast results of management experiments on key 

ecological indicators between control and treatment areas.

http://www.cmar.csiro.au/research/mse
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5.0 MANAGEMENT IMPLICATIONS 

Based on this review, I draw the following conclusions regarding the impacts of 
energy development on wildlife populations. 
 
1) The current management policy for energy development makes two 

untested assumptions regarding the effects of energy development on 
wildlife. First, it assumes that negative impacts of energy development on 
wildlife can be mitigated through small-scale stipulations that regulate the 
timing and duration of activity, but not the amount. This current policy also 
assumes that wildlife populations can withstand continued, incremental 
development. Neither of these two assumptions are supported or refuted by 
evidence reviewed in the scientific literature as part of this review. 
Regardless, adaptive experiments to explicitly test these management 
hypotheses are needed. 
 

2) There is currently no rigorous scientific evidence that energy 
development will have population-level impacts on pronghorn, mule 
deer or elk in eastern or central Montana. However, this is because there 
have been no properly designed, thoughtful, rigorous tests of the population-
level impacts conducted to date. Instead, a host of observational studies on 
small-scale and short-term responses provides limited guidance to managers 
in search of the crucial question of population impacts. While theoretically 
justified, relying on the precautionary principle to restrict energy development 
will likely be unsuccessful as an energy development policy. 

 
3) Short-term and small-scale impacts of energy development have been 

relatively well described in previous reviews and studies, albeit most 
often in poorly designed observational studies. GPS collar studies have 
aided attempts to document small-scale responses to development, and will 
continue to be useful in the future in this correlational framework. Ungulates 
predictably avoid areas during active exploration and drilling, moving to 
denser cover and areas farther from human activity. Recommendations from 
previous studies still hold, namely timing and seasonal restrictions for critical 
habitats and resources. Across studies, ungulates showed avoidance 
responses to human development an average of 1000m from the human 
disturbance. 

 
4) Scaling up from small-scale/short-term studies to population-level 

impacts will be difficult. One of the key difficulties is scaling up responses 
of ungulates at low development densities to high densities present in heavily 
developed oilfields (e.g. Upper Green River Basin). Preliminary analyses 
suggest that thresholds for significant impacts on ungulates will occur 
between densities of 0.1 to 0.5 wells/km2 and 0.2 to 1.0 linear km/km2 of 
roads and linear developments. However, these results are preliminary, and 
more formal meta-analyses are suggested. 
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5) Building on the strong example of the Montana Cooperative Elk-Logging 

study that ran through the 1970’s and 1980’s, a series of research and 
management recommendations are made. 

 
a. First, a formal meta-analyses of the existing energy literature is 

recommended to allow scientifically defensible quantitative 
estimates of the effects of energy development on behavior, habitat 
and population dynamics. 
 

b. Second, building on this meta-analysis, a power analysis of the 
optimal experimental design, level of replication, and duration of a 
energy-impact study design should be conducted to reveal the best 
approach for both short-term (behavior, habitat) and long-term 
impact assessment. 

 
c. Third, a series of large-scale, population-level and long-term 

experimental comparisons similar to the Montana Cooperative 
Elk-Logging study should be initiated in eastern and central 
Montana on elk, mule deer and pronghorn. The study design 
should be replicated ideally across three levels of development; 
none – control, initial phases –low densities of wells/roads, and 
after at least a decade of intensive development, to allow a rigorous 
test of the population effects of energy development on wildlife. 
Partnerships with existing studies occurring in other developed 
areas should be developed (e.g., Upper Green River Basin 
studies), but control areas in Montana should be developed (e.g., 
Charles M. Russell Wildlife Refuge).  

 
d. Fourth, implement an adaptive management experiment (in 

conjunction with the third point above) to test whether the current 
energy policy is sustainable from a wildlife population perspective. 
The de-facto energy policy as being implemented in Montana (and 
elsewhere) makes a number of assumptions that may in fact be 
incorrect. However, no serious alternatives have been developed or 
put forward as serious contenders that could be compared in large 
management experiments to test whether different models for 
energy development are required. If the bleak situation for Alberta 
caribou is any suggestion, alternative energy development policies 
are sorely needed.  
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Appendix A: Electronic Database 
 

Ungulate Energy Development Literature Citation Database 
 
This searchable electronic database contains literature and research summaries on all 
aspects of the effects of energy development on ungulates. This exhaustive database 
contains all journal papers, conference proceedings, M.S. and Ph.D. theses, 
government reports, and other unpublished manuscripts concerning ungulates (Bighorn 
Sheep (Ovis canadensis), American pronghorn (Antilocapra antilocapra), Elk (Cervus 
elaphus), Mule deer (Odocoileus hemionus), woodland caribou (Rangifer tarandus)). 
The database was made using multiple search methods and bibliographic sources. 
 
The database utilizes ProCite 5, a commercial reference management software. 
 

To open the Wild Energy database:  
 
1. Start ProCite 
 
2. A file Open dialog displays for you to locate and open a database. If not, go to the 

File menu and choose Open.  
 
The database window displays a record list of abbreviated records. By default the first 
Author field, Title field and Date field are shown from each record.  
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A status line at the bottom of the window indicates the sort order (Author/Title/Date in 
ascending order by default), the number of records marked, the number of records 
displayed in the current list and the total number of records in the database.  
 
Double click on a specific reference to view the detailed data record. 
 

Searching the database: 
 
1. Click on the Search tab at the bottom of the window.  
 

 
 
You can enter search terms, use Boolean operators, and limit your search to certain 
fields. All records that fit your search will be presented as a group in the results box at 
the bottom of the screen. 
 

To launch a PDF found in ProCite’s Location/URL field:  
 

1. Double-click a record to display the full record.  
 
2. Locate the Location/URL (38) field.  
 
3. If there is a file path location in the field, the PDF is linked to the record. 
 
4. From the Tools menu, choose Open File/URL or click the toolbar icon. ProCite 

launches the application that opens the PDF.  
 
Note: You are not required to display the full record. You can launch a URL from a 

record list by highlighting the record and using the Open File/URL toolbar icon. 
 

Assistance with ProCite: 
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1. ProCite Web Site - http://www.procite.com 
 
The ProCite web site has a great deal of useful information on using ProCite, including 
a frequently asked questions page, a user email discussion list, and a free demo 
version of ProCite. 
 
2. Using ProCite 5: A Guided Tour -
http://www.procite.com/support/docs/ProCite%205%20Guided%20Tour-2005.pdf 
 
This tour contains detailed information on how to manipulate and utilize the ProCite 
database. 
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Appendix B: Management Guidelines 
Management guidelines developed to minimize the impacts of oil and gas development in north-

central Montana (Interagency Technical Committee 1987) cited in Irby et al. (1988).  

 

 


